Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T01:49:42.306Z Has data issue: false hasContentIssue false

Brain activation during fear conditioning in humans depends on genetic variations related to functioning of the hypothalamic–pituitary–adrenal axis: first evidence from two independent subsamples

Published online by Cambridge University Press:  12 March 2012

S. Ridder
Affiliation:
Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
J. Treutlein
Affiliation:
Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
F. Nees
Affiliation:
Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
S. Lang
Affiliation:
Institute of Psychology, Department of Clinical Psychology and Psychotherapy, Heidelberg University, Heidelberg, Germany
S. Diener
Affiliation:
Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
M. Wessa
Affiliation:
Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
A. Kroll
Affiliation:
Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
S. Pohlack
Affiliation:
Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
R. Cacciaglia
Affiliation:
Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
P. Gass
Affiliation:
Research Group Behavioral Biology, Central Institute of Mental Health, Mannheim, Germany
G. Schütz
Affiliation:
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
G. Schumann
Affiliation:
Section of Addiction Biology, Division of Psychological Medicine and Psychiatry, Institute of Psychiatry, King's College London, London, UK
H. Flor*
Affiliation:
Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
*
*Address for correspondence: H. Flor, Ph.D., Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany. (Email: herta.flor@zi-mannheim.de)
Rights & Permissions [Opens in a new window]

Abstract

Background

Enhanced acquisition and delayed extinction of fear conditioning are viewed as major determinants of anxiety disorders, which are often characterized by a dysfunctional hypothalamic–pituitary–adrenal (HPA) axis.

Method

In this study we employed cued fear conditioning in two independent samples of healthy subjects (sample 1: n=60, sample 2: n=52). Two graphical shapes served as conditioned stimuli and painful electrical stimulation as the unconditioned stimulus. In addition, guided by findings from published animal studies on HPA axis-related genes in fear conditioning, we examined variants of the glucocorticoid receptor and corticotropin-releasing hormone receptor 1 genes.

Results

Variation in these genes showed enhanced amygdala activation during the acquisition and reduced prefrontal activation during the extinction of fear as well as altered amygdala–prefrontal connectivity.

Conclusions

This is the first demonstration of the involvement of genes related to the HPA axis in human fear conditioning.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012 The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence <http://creativecommons.org/licenses/by-nc-sa/2.5/>. The written permission of Cambridge University Press must be obtained for commercial re-use.

Introduction

One of the best-understood and most studied learning paradigms is classical cued fear conditioning where a neutral stimulus is repeatedly paired with an aversive unconditioned stimulus (US) such as an electric shock. Over time the neutral stimulus alone elicits a learnt or conditioned fear response that resembles innate or unconditioned responses. Repeated presentation of the unreinforced conditioned stimulus (CS) leads to a decrease of the acquired fear response or extinction. A key brain region for the acquisition of conditioned fear is the amygdala (LeDoux, Reference LeDoux2000) whereas extinction has been related to the inhibition of amygdalar activation by the prefrontal cortex (Herry et al. Reference Herry, Ferraguti, Singewald, Letzkus, Ehrlich and Lüthi2010). In post-traumatic stress disorder (PTSD) and other anxiety disorders the enhanced acquisition and delayed extinction of fear responses are viewed as a major aetiological mechanism (Bremner et al. Reference Bremner, Vermetten, Schmahl, Vaccarino, Vythilingam, Afzal, Grillon and Charney2005; Delgado et al. Reference Delgado, Olsson and Phelps2006; Rauch et al. Reference Rauch, Shin and Phelps2006; Blechert et al. Reference Blechert, Michael, Vriends, Margraf and Wilhelm2007). Recent evidence further suggests that insufficient prefrontal activation during extinction might be important for the maintenance of fear symptoms and stimulation of these brain areas could have therapeutic effects (Amano et al. Reference Amano, Unal and Paré2010). Anxiety disorders such as PTSD are also characterized by alterations in the function of the hypothalamic–pituitary–adrenal (HPA) axis to a hypoactive mode with reduced basal and stress-related cortisol levels as well as increased suppression after the dexamethasone-suppression test (Yehuda, Reference Yehuda2006; Wessa & Rohleder, Reference Wessa and Rohleder2007).

The heritability of the components of fear conditioning has been estimated at 35–45% (Hettema et al. Reference Hettema, Annas, Neale, Kendler and Fredrikson2003) and several genes involved in the regulation of plasticity and emotional reactivity have been found associated with the conditionability of fear responses (Lonsdorf et al. Reference Lonsdorf, Weike, Nikamo, Schalling, Hamm and Ohman2009). Besides altered fear conditioning, anxiety disorders such as PTSD are also characterized by a dysfunction of the HPA axis, which is regulated by corticotropin-releasing hormone (CRH) and glucocorticoids. They have been implicated in fear conditioning in animal models as well as in PTSD in humans (de Kloet et al. Reference de Kloet, Vermetten, Geuze, Lentjes, Heijnen, Stalla and Westenberg2008; Rodrigues et al. Reference Rodrigues, LeDoux and Sapolsky2009). For example, CRH injection into the central nucleus of the amygdala and CRH injection into the medial prefrontal cortex both result in increased anxiety-related behaviour (Timpl et al. Reference Timpl, Spanagel, Sillaber, Kresse, Reul, Stalla, Blanquet, Steckler, Holsboer and Wurst1998), while mice lacking the CRH receptor (CRHR1) gene display reduced anxiety-related behaviour (Müller et al. Reference Müller, Zimmermann, Sillaber, Hagemeyer, Deussing, Timpl, Kormann, Droste, Kühn, Reul, Holsboer and Wurst2003). In PTSD, elevation of CRH was found in the cerebrospinal fluid, indicating a possible role in altered brain activity (Baker et al. Reference Baker, West, Nicholson, Ekhator, Kasckow, Hill, Bruce, Orth and Geracioti1999; Jaferi & Bhatnagar, Reference Jaferi and Bhatnagar2007; de Kloet et al. Reference de Kloet, Vermetten, Geuze, Lentjes, Heijnen, Stalla and Westenberg2008) in fear learning. These observations strengthen the assumption of a tight connection between the amygdaloid CRH system and HPA functioning in fear conditioning as well as in stress-related disorders, such as PTSD, in humans.

The glucocorticoid receptor (GR) is a main regulator of the HPA axis and has been shown to influence endocrine and behavioural measures of fear in various animal studies (Bremner et al. Reference Bremner, Licinio, Darnell, Krystal, Owens, Southwick, Nemeroff and Charney1997; de Kloet et al. Reference de Kloet, Vreugdenhil, Oitzl and Joëls1998). Pharmacological GR (NR3C1) manipulations, for example, of amygdaloid GRs were shown to modulate processes of fear conditioning (Yang et al. Reference Yang, Chao and Lu2006) and to be related to the establishment of fear memories (e.g. Oitzl et al. Reference Oitzl, Fluttert, Sutanto and de Kloet1998), and to facilitated extinction of conditioned fear (Yang et al. Reference Yang, Chao and Lu2006). GR receptors in the prefrontal cortex might be related to a failure to extinguish established fear responses (Tronel & Alberini, Reference Tronel and Alberini2007) and to an enhancement of emotional memory consolidation, suggesting that these effects reflect an interaction of the medial prefrontal cortex and the basolateral amygdala (Roozendaal et al. Reference Roozendaal, McReynolds, Van der Zee, Lee, McGaugh and McIntyre2009).

However, it is not known if the reported changes in brain activity during fear conditioning and the altered HPA axis activity seen in PTSD patients reflect consequences of the traumatic event or might be interpreted as predisposing vulnerability factors increasing the susceptibility for the disorder. The latter has been proposed in a study that examined firefighters before the experience of traumatic events. Reduced extinction of an aversively conditioned corrugator electromyographic response predicted more than 30% of the variance of PTSD symptoms following trauma (Guthrie & Bryant, Reference Guthrie and Bryant2006). A twin study conducted with combat veterans and their non-combat-exposed sibling revealed that structural changes in the brain are pre-existing familial vulnerability factors (Gilbertson et al. Reference Gilbertson, Shenton, Ciszewski, Kasai, Lasko, Orr and Pitman2002; Pitman et al. Reference Pitman, Gilbertson, Gurvits, May, Lasko, Metzger, Shenton, Yehuda and Orr2006). As a formal genetic study attributes moderate heritability to all components of the fear-conditioning process (Hettema et al. Reference Hettema, Annas, Neale, Kendler and Fredrikson2003), it is of interest to identify the genetic variations responsible at the molecular level. The identified genes could be regarded as vulnerability factors making subjects more susceptible for stress-related disorders.

We used an imaging genetics approach in two independent samples (sample 1: n=60, sample 2: n=52) of healthy individuals to investigate the influence of genetic variation of HPA axis-related genes [CRH receptor 1 (CRHR1), GR (NR3C1)] on the acquisition and extinction of cued fear responses. The products of both genes are among the most important molecules of the HPA axis and were repeatedly reported to be involved in processes of fear conditioning in animal studies (CRHR1, e.g. Radulovic et al. Reference Radulovic, Rühmann, Liepold and Spiess1999, Kikusui et al. Reference Kikusui, Takeuchi and Mori2000, Otagiri et al. Reference Otagiri, Wakabayashi and Shibasaki2000; NR3C1, e.g. Cordero et al. Reference Cordero, Kruyt, Merino and Sandi2002, Yang et al. Reference Yang, Chao and Lu2006, Kohda et al. Reference Kohda, Harada, Kato, Hoshino, Motohashi, Yamaji, Morinobu, Matsuoka and Kato2007, Kolber et al. Reference Kolber, Roberts, Howell, Wozniak, Sands and Muglia2008), which was the reason to include these two in the present study. In addition, the first genetic findings for PTSD exist for the Bcl1 variant (rs41423247) of the GR gene. The GG genotype of this single nucleotide polymorphism (SNP) was associated with low basal cortisol levels in PTSD (Bachmann et al. Reference Bachmann, Sedgley, Jackson, Gibson, Young and Torpy2005) and with more long-term traumatic memories and higher PTSD symptom scores (Hauer et al. Reference Hauer, Weis, Papassotiropoulos, Schmoeckel, Beiras-Fernandez, Lieke, Kaufmann, Kirchhoff, Vogeser, Roozendaal, Briegel, de Quervain and Schelling2011). We employed functional magnetic resonance imaging (fMRI) and used a linear regression approach (according to Ressler et al. Reference Ressler, Mercer, Bradley, Jovanovic, Mahan, Kerley, Norrholm, Kilaru, Smith, Myers, Ramirez, Engel, Hammack, Toufexis, Braas, Binder and May2011), which permitted the comparison of groups with respect to degree of genetic variation with and without minor alleles. We examined amygdala activation as an indicator for acquisition and prefrontal activation as an indicator for extinction and also included connectivity analyses. To control for successful conditioning, we assessed skin conductance responses (SCRs) and self-report measures.

Method

Participants

A total of sixty persons [38 male, 22 female, mean age 21.25 (s.d.=3.02, range 19–37) years, all right-handed] recruited in schools for ambulance rescue workers as part of a longitudinal study were examined in study 1 (sample 1) and 52 persons [32 male, 20 female, mean age 22.27 (s.d.=3.67, range 18–37) years, all right-handed] from the same population were recruited for study 2 (sample 2). Participants with past traumatic events as assessed by the German version of the Posttraumatic Diagnostic Scale (Griesel et al. Reference Griesel, Wessa and Flor2006) were excluded. All participants were medication free and had no physical or mental disorders. The study was approved by the Ethics Committee of the Medical Faculty Mannheim, Heidelberg University, and written informed consent was obtained from all participants, who were paid for participation.

Psychological assessment

Standardized clinical assessment with the Structured Clinical Interview for DSM-IV Axis I (First et al. Reference First, Spitzer, Gibbon and Williams1997b ) and Axis II (First et al. Reference First, Gibbon, Spitzer, Williams and Benjamin1997a ) was performed to exclude persons with mental disorders. Psychological assessment was identical for all subjects and included the Center for Epidemiological Studies Depression Scale (Radloff, Reference Radloff1977), the trait section of the State-Trait Anxiety Inventory (Spielberger et al. Reference Spielberger, Gorsuch and Lushene1970), the Perceived Stress Scale (Cohen et al. Reference Cohen, Kamarck and Mermelstein1983) and the Childhood Trauma Questionnaire (Bernstein & Fink, Reference Bernstein and Fink1998) (see Table 1). Since we did not find any differences in scores on the psychological measures depending on the genotype, we did not focus on these data in the Results section.

Table 1. Clinical characteristics of the participants

Data are given as mean (standard deviation).

SCR and self-report data

The SCRs were recorded from two electrodes placed on the thenar and hypothenar eminence of the participants' right hand using a sampling rate of 16 Hz and a VarioPort recording system (BECKER MEDITEC, Germany). Data analysis was performed using EDA-PARA software (F. Schäfer, Germany) and followed the guidelines of Fowles et al. (Reference Fowles, Christie, Edelberg, Grings, Lykken and Venables1981) . Trials were visually inspected for artifacts and SCR amplitudes were quantified as the maximum response in the time window of 1–4 s (first interval response) and 5–9 s (second interval response; Prokasy & Ebel, Reference Prokasy and Ebel1967) after stimulus onset and were measured in microSiemens (μS). SCR amplitudes below 0.05 μS were classified as zero responses. SCR data were normalized using a logarithmic [log (1+SCR)] transformation.

After each conditioning phase, participants verbally rated the emotional valence and arousal of the CSs (1=very calm to 9=very arousing, 1=very pleasant to 9=very unpleasant) as well as the CS–US contingency (1=no CS–US contingency to 9=perfect CS–US contingency). All auditory or visual instructions for the experimental procedure were standardized. Communication was realized via headphones with attached microphones.

SCRs and self-report data were analysed separately using Predictive Analytic Software (PASW) for Windows, version 18.0.1 (SPSS Inc., USA). Both SCRs and self-reports showed successful conditioning and extinction in samples 1 and 2. Since differences in the genotype groups could not be observed for either measure, we present only the fMRI analyses in the Results section.

DNA extraction, selection of SNPs and genotyping

Venous blood samples were obtained from all participants. Genomic DNA was isolated with the QIAamp DNA extraction kit (www.qiagen.com/). For genetic characterization of the NR3C1 and CRHR1 genes, we selected SNPs with potential functionality from the literature as well as tagging SNPs from the HapMap database and literature. For the NR3C1 gene, we chose the potentially functional variants N363S (rs6195) (e.g. Jewel & Cidlowski, Reference Jewell and Cidlowski2007), BclI (rs41423247) (Stevens et al. Reference Stevens, Ray, Zeggini, John, Richards, Griffiths and Donn2004) and Tth111I (rs10052957) (Rosmond et al. Reference Rosmond, Chagnon, Chagnon, Pérusse, Bouchard and Björntorp2000). Tagging SNPs for the NR3C1 gene were selected by a blockwise strategy from HapMap data, using haplotypes above 5% frequency in HaploView (e.g. Barrett et al. Reference Barrett, Fry, Maller and Daly2005). NR3C1 transcript NM_000176, which covers 123.8 kbp on chr5, contained only one large haplotype block, which is tagged by four haplotype tagging SNPs, i.e. rs33389, rs4986593, rs10482672 and rs190488 (HapMap Rel 16c, NCBI B34 assembly, dbSNP b124). Tagging SNPs for the CRHR1 gene, rs1876831 and rs242938, were selected from the literature, based on detailed linkage disequilibrium information of CRHR1 SNPs from several publications (e.g. Treutlein et al. Reference Treutlein, Kissling, Frank, Wiemann, Dong, Depner, Saam, Lascorz, Soyka, Preuss, Rujescu, Skowronek, Rietschel, Spanagel, Heinz, Laucht, Mann and Schumann2006; Wassermann et al. Reference Wasserman, Wasserman, Rozanov and Sokolowski2009; Grabe et al. Reference Grabe, Schwahn, Appel, Mahler, Schulz, Spitzer, Fenske, Barnow, Lucht, Freyberger, John, Teumer, Wallaschofski, Nauck and Völzke2010; Nelson et al. Reference Nelson, Agrawal, Pergadia, Wang, Whitfield, Saccone, Kern, Grant, Schrage, Rice, Montgomery, Heath, Goate, Martin and Madden2010). The tagging markers were shown to be sufficient to provide information on the brain activation during fear conditioning and captured 66% of the markers of the NR3C1 and 45% of SNPs of the CRHR1 genes according to HapMap release 24 (threshold r 2 ⩾ 0.8, allele frequency ⩾5%). Genotyping was performed using an Applied Biosystems Prism 7900HT RealTime PCR system. Table S1 (see Supplementary material) lists the IDs of Applied Biosystems Assays-on-DemandTM and Primer/Probe sequences of Assays-by-Design. Allele frequencies and genotype counts for the polymorphisms that contributed significantly to the association signals in the two samples are shown in Table 2.

Table 2. Allele frequencies and genotype counts for the polymorphisms that contributed significantly to the association signals in the two samples

HWE, Hardy–Weinberg equilibrium.

a Test for deviation from HWE (Wigginton et al. Reference Wigginton, Cutler and Abecasis2005).

Design of the fear-conditioning experiment

Perception and pain threshold as well as pain tolerance (three repetitions in an ascending series) were assessed for the calculation of the intensity of the US, which was painful electrical stimulation (Digitimer, UK) at the thumb of the right hand set to a level of 80% of pain tolerance. Two different geometric shapes (a square and a rhombus) in different colours (blue or yellow) were presented as cue stimuli with colours and shapes counterbalanced across subjects. During habituation 10 CS+ (neutral stimulus that would later be followed by the aversive US), 10 CS− (neutral stimulus that would later be followed by the absence of the US) and four US were presented in random order. The acquisition was divided into two phases, each consisting of nine CS+ paired with the US, nine CS+ not paired with the US and 18 CS− (never paired with the US) in random order. The extinction phase consisted of 18 CS+ and 18 CS− trials. The CS+ was reinforced in 50% of the trials with a shock duration of 2.7 s before the end of the CS+ projection (see Fig. 1). After each phase the participants rated valence and arousal on a self-assessment manikin. CS–US contingency was rated on a scale from 0 (US will not follow the CS) to 100 (US will definitely follow the CS).

Fig. 1. Fear-conditioning paradigm. CS+, Neutral conditioned stimulus (yellow rhombus) later followed by an aversive unconditioned stimulus (US), an electric shock (red flash); ITI, inter-trial interval; CS−, neutral stimulus (blue square) later followed by the absence of the US.

Statistical analysis

Effects of genetic markers on amygdala activation during fear conditioning and medial prefrontal activation during fear extinction were assessed using a linear regression approach (Ressler et al. Reference Ressler, Mercer, Bradley, Jovanovic, Mahan, Kerley, Norrholm, Kilaru, Smith, Myers, Ramirez, Engel, Hammack, Toufexis, Braas, Binder and May2011). SNPs were coded using an additive model, i.e. using the number of minor alleles of the respective markers as predictors. Age and gender were also tested but revealed no significant effects and were thus not included in the further analyses. For the first sample a model was built including all of the above-mentioned SNPs as predictors. For the second sample the same model was tested, but this time omitting the markers that had not obtained a nominally significant p value in the first sample. In these models the minor alleles of the nominally significant markers uniformly showed up as associated alleles. In order to build a summary score of all SNPs, genotype was coded by the total number of minor alleles across all markers. Scores were built across both genes and for the NR3C1 gene separately. This permitted the comparison of groups with respect to the degree of genetic variation with and without minor alleles for brain activation (see the legend of Fig. 2 for details). All significance levels were set to p<0.05.

Fig. 2. (a) Increased activity in the left amygdala elicited by CS+ versus CS- in the first half of the acquisition as a function of NR3C1 genotype, coded 0 for no minor allele ( ), 1 for one or two minor alleles (□), 2 for more than two minor alleles ( ) (for sample 1, group 0: n=26, group 1: n=26, group 2: n=8; for sample 2, group 0: n=16, group 1: n=30, group 2: n=6). CS+, neutral conditioned stimulus later followed by the aversive unconditioned stimulus (US); CS-, neutral stimulus later followed by the absence of the US. Values are means, with 95% confidence intervals (CIs) represented by vertical bars. * p<0.05. (b) Genotype-dependent differential activation of the prefrontal cortex during extinction involving CRHR1 and NR3C1 genotypes (coded 0 for no minor allele ( ), 1 for one minor allele (□), 2 for more than one minor allele ( ) (for sample 1, group 0: n=12, group 1: n=24, group 2: n=23; for sample 2, group 0: n=13, group 1: n=20, group 2: n=19). BA, Brodmann area. Values are means, with 95% CIs represented by vertical bars. * p<0.05. (c) T maps revealing increases in functional coupling for the contrasts between genotype group 2 versus groups 0 and 1 during the early acquisition phase (left panel) and genotype-dependent functional coupling during early acquisition between the left amygdala and prefrontal cortex (right panel). Group 0, no minor allele ( ); group 1, one minor allele (□); group 2, more than one minor allele ( ); AU, arbitrary units at the target-region peak voxels. Values are means, with 95% CIs represented by vertical bars. (d) t Maps revealing increases in functional coupling for the contrasts between the genotype groups during the extinction phase (left panel) and coupling strength for the extinction phase between the left prefrontal cortex and left amygdala (right panel). Group 0, no minor allele ( ); group 1, one minor allele (□); group 2, more than one minor allele ( ). Values are means, with 95% CIs represented by vertical bars.

fMRI

Neuroimaging was performed during classical aversive delay cued conditioning in a 1.5 T Magnetom Vision scanner (Siemens Medical Solutions, Germany). Contiguous transversal T2*-weighted echo-planar images (EPI) with blood oxygenation level-dependent (BOLD) contrast were used (echo time 45 ms, flip angle 90°) that covered the whole brain (35 slices, slice thickness 3 mm, 1 mm gap, field of view=220×220 mm2, 64×64 matrix). The effective repetition time was 3.77 s per volume. A total of 560 volumes were recorded. Statistical parametric mapping (SPM) software was used for image processing and analysis (SPM2, http://www.fil.ion.ucl.ac.uk/spm/). The images were slice-time corrected for phase shift during volume acquisition, realigned to the first image for motion artefacts, spatially normalized to a standard EPI template, spatially smoothed with an isotropic Gaussian kernel with a full width at half-maximum of 10 mm, and temporal high-pass filtered (cut-off 128 s). Specific effects were tested by applying linear contrasts to the parameter estimated for each event. Contrast images of interest were calculated for each subject, and the resulting contrast images were entered into a second-level random-effects analysis to produce group results (one-sample t test). For each phase (early acquisition, late acquisition, and extinction) contrasts between CS+ and CS−, i.e. CS+>CS−, were calculated. We used a threshold of p<0.001 for the entire brain (uncorrected, extent threshold k=5 voxels). Additionally, according to our a priori hypothesis that alterations of amygdala activation during acquisition and prefrontal cortex activation during extinction should be associated with HPA axis-related genes (e.g. Yang et al. Reference Yang, Chao and Lu2006; Tronel & Alberini, Reference Tronel and Alberini2007), we adopted a region-of-interest (ROI) approach with small volume correction [p<0.05, family-wise error (FWE) corrected], also corrected for the number of ROIs. Regions were defined using the MARINA software package (http://www.bion.de/). To detect the association between genotype and fMRI activation in the amygdala and in the prefrontal cortex on a voxel-by-voxel basis, the contrast images of all subjects (percentage signal change of CS+ versus CS−) were included in a regression analysis with SPM.

Functional coupling analysis

Connectivity analyses were performed to determine genotype-dependent changes in functional coupling between the amygdala, the hippocampus and the prefrontal cortex that are related to the acquisition and extinction of the learned response. Functional coupling between seed regions (spheres with radius=6 mm, coordinates based on the current sample for acquisition phase: x, y, z: −24, −6, −18; for extinction phase: x, y, z: −36, 60, 0) and target regions was determined for the early acquisition phase and the extinction phase separately using standard SPM methods. For the early acquisition phase the left amygdala served as the seed region and the prefrontal cortex as the target region. For the extinction phase, the left prefrontal cortex [Brodmann area (BA) 10] (seed region) and left amygdala (target region) were used for the functional coupling analysis.

From both seed regions fMRI time series were extracted and used as regressors in a subsequent single-subject analysis, where the movement-related covariates were additionally included. These contrasts were used to carry out a random-effects analysis to determine functional coupling between groups assigned to different genotypes using two-sample t tests.

We report T values small-volume corrected using the following ROIs: prefrontal cortex (coordinates x=0, y=52, z=−3; sphere with radius=9 mm, see Heinz et al. Reference Heinz, Wrase, Kahnt, Beck, Bromand, Grüsser, Kienast, Smolka, Flor and Mann2007) and left amygdala (created using the MARINA software package). Peak activations were correlated with subjective and endocrinological variables using Pearson correlations.

Results

Acquisition- and extinction-related significant BOLD signal differences between CS+ and CS− were found in a number of brain regions (see Supplementary Table S2 and Fig. 2).

A linear regression (Ressler et al. Reference Ressler, Mercer, Bradley, Jovanovic, Mahan, Kerley, Norrholm, Kilaru, Smith, Myers, Ramirez, Engel, Hammack, Toufexis, Braas, Binder and May2011) including all tested variants yielded highly significant associations of the minor alleles of several SNPs with fear conditioning. These SNPs were then included in a score-based analysis (see Fig. 2 and Table 3). We observed in the left, but not the right, amygdala a positive correlation between the peak BOLD signal change in the amygdala elicited by CS+ (danger signal) versus CS− (safety signal) during early acquisition and the number of minor alleles of NR3C1 rs33389, NR3C1 Bcl1 (rs41423247) and NR3C1 rs4986593 [r=0.48, F(3, 55)=6.01, p=0.001, see also Fig. 2]. For extinction, lack of differential activation in the prefrontal cortex was associated with an increasing number of minor alleles of CRHR1 rs242938, CRHR1 rs1876831, NR3C1 rs6195 and NR3C1 Tth111I (rs10052957), suggesting impaired extinction with increased genetic minor allele variants [r=0.60, F(4, 54)=6.24, p<0.001].

Table 3. Peak voxel values of functional coupling analysis in sample 1 showing increased coupling for the genotype group coded 2 as compared with genotype groups 0 and 1Footnote a

BA, Brodmann area; MNI, Montreal Neurological Institute.

a Coordinates are stated in MNI space.

During early acquisition, the subjects with several minor alleles showed significantly more functional coupling of the BOLD signal between the left amygdala and prefrontal cortex compared with those with only one or no minor allele on the NR3C1 gene. For extinction, functional coupling strength between the left prefrontal cortex and left amygdala was most pronounced for the subjects with at least two minor alleles on the NR3C1 and CRHR1 genes. No significant association with single genetic markers was seen.

We sought to replicate the association of these polymorphisms with amygdala and prefrontal cortex activation during acquisition and extinction in a second independent sample of 52 individuals from the same population (for sample characteristics, see Tables 1 and 2). Of the three NR3C1 polymorphisms, two were again significant predictors of differential amygdala activation in the early acquisition phase [NR3C1 rs33389, NR3C1 rs4986593: r=0.45, F(2, 42)=5.45, p=0.008] when all variables were entered, but NR3C1 Bcl1 (rs41423247) was also significant by itself when a stepwise solution was employed [r=0.41, F(1, 44)=8.82, p=0.005]. The same four SNPs [CRHR1 rs242938, CRHR1 rs1876831, NR3C1 N363S (rs6195), NR3C1 Tth111I (rs10052957)] were again significant for differential activation (i.e. delayed extinction) in the prefrontal cortex (BA10) during extinction [r=0.47, F(4, 43)=2.79, p=0.04].

These findings could also be found when combining both samples. Genetic variants were unrelated to skin conductance or self-report data of fear conditioning.

Discussion

The present study is the first to show a significant contribution of HPA axis-related genes to brain activation during fear conditioning and extinction in humans. Thus, more minor alleles in the NR3C1 gene were related to enhanced amygdala activation during conditioning and more minor alleles in the NR3C1 and CRHR1 genes were associated with reduced prefrontal activation during extinction, suggesting an accumulation of the effects. In addition, enhanced amygdala–prefrontal connectivity during acquisition, suggesting better fear memory consolidation, and higher amygdala–prefrontal interaction during extinction, suggesting sustained fear, were genotype related.

The development of PTSD after trauma exposure might depend on altered processes of fear learning. An inability to habituate to aversive stimuli and a reduction in inhibition of fear memories have often been reported (Rauch et al. Reference Rauch, Shin and Phelps2006; Yehuda & LeDoux, Reference Yehuda and LeDoux2007; Jovanovic et al. Reference Jovanovic, Norrholm, Blanding, Davis, Duncan, Bradley and Ressler2010; Jovanovic & Ressler, Reference Jovanovic and Ressler2010; Shin & Liberzon, Reference Shin and Liberzon2010). The amygdala was previously shown to be involved in the elaboration of conditioned fear responses (Davis, Reference Davis1992), while the prefrontal cortex was shown to regulate the activity of the amygdala in a top-down process and to inhibit the extinction of conditioned fear responses (Milad & Quirk, Reference Milad and Quirk2002; Peters et al. Reference Peters, Kalivas and Quirk2009). The present data are in accordance with animal data that reported a close association of CRH1 receptors in the amygdala and fear conditioning (Yang et al. Reference Yang, Chao and Lu2006) and a close association of GRs and fear acquisition (Kolber et al. Reference Kolber, Roberts, Howell, Wozniak, Sands and Muglia2008). The finding that significant amygdala activation was only present during early acquisition also supports previous reports on time-dependent activation of the amygdala during conditioning (e.g. Büchel et al. Reference Büchel, Morris, Dolan and Friston1998). Thus, the amygdala seems to play a larger role in the initiation than the maintenance of the response. In addition, we did not find similar genotype-related differences for subjective indicators of conditioning or skin conductance as we found for brain activation. This is not unusual and related to the fact that brain activation may be more closely related to genetic factors than subjective ratings or peripheral responses and may thus be more suitable as an intermediate phenotype (e.g. Meyer-Lindenberg, Reference Meyer-Lindenberg2010). Our data strengthen the hypothesis that HPA axis functioning and stress play a role in the development of anxiety disorders (McFarlane et al. Reference McFarlane, Barton, Yehuda and Wittert2011) and are in accordance with the findings described above that genes involved in glucocorticoid signalling are differentially expressed in PTSD (Yehuda et al. Reference Yehuda, Cai, Golier, Sarapas, Galea, Ising, Rein, Schmeidler, Müller-Myhsok, Holsboer and Buxbaum2009). The observed pattern corresponds to the deficits in patients with PTSD who retain responses to trauma cues, fail to extinguish cue-relevant associations and show altered genotypes of HPA axis-related genes (Rauch et al. Reference Rauch, Shin and Phelps2006; Yehuda et al. Reference Yehuda, Flory, Pratchett, Buxbaum, Ising and Holsboer2010).

Although the minor allele cannot be regarded as relevant to the analysed conditioning and clinical characteristics a priori, the distribution of alleles in the model applied to the first sample showed that the minor alleles accumulated for the observed neural activation patterns during conditioning. The reason for our observation that the associated alleles are the minor alleles (allele frequency of ⩽40.4%) is unclear. From an evolutionary point of view, both minor and major alleles can confer susceptibility to a trait, and based on selection for a trait or drift, the allele frequency of a marker is subject to change over time (Jobling et al. Reference Jobling, Hurles and Tyler-Smith2003; Keller & Miller, Reference Keller and Miller2006). However, for two of the analysed markers [NR3C1 Bcl1 (van Rossum et al. Reference van Rossum, Koper, van den Beld, Uitterlinden, Arp, Ester, Janssen, Brinkmann, de Jong, Grobbee, Pols and Lamberts2003), NR3C1 N363S (Huizenga et al. Reference Huizenga, Koper, De Lange, Pols, Stolk, Burger, Grobbee, Brinkmann, De Jong and Lamberts1998)] the minor alleles have been reported to increase glucocorticoid sensitivity (which was suggested to occur in PTSD, e.g. Rohleder et al. Reference Rohleder, Joksimovic, Wolf and Kirschbaum2004; Yehuda et al. Reference Yehuda, Golier, Yang and Tischler2004), but this seems not to apply to all tissues (Koper et al. Reference Koper, Stolk, de Lange, Huizenga, Molijn, Pols, Grobbee, Karl, de Jong, Brinkmann and Lamberts1997; Kumsta et al. Reference Kumsta, Entringer, Koper, van Rossum, Hellhammer and Wüst2008). This strengthens our observation of the association of the minor alleles with trait-like factors of increased fear memory consolidation and failed extinction reflected by amygdala–prefrontal activation patterns.

Supplementary material

For supplementary material accompanying this paper, visit http://dx.doi.org/10.1017/S0033291712000359.

Acknowledgements

Support for this study was provided by grant no. SFB636/C1 from the Deutsche Forschungsgemei-nschaft to H.F.

Declaration of Interest

None.

References

Amano, T, Unal, CT, Paré, D (2010). Synaptic correlates of fear extinction in the amygdala. Nature Neuroscience 13, 489494.CrossRefGoogle ScholarPubMed
Bachmann, AW, Sedgley, TL, Jackson, RV, Gibson, JN, Young, RM, Torpy, DJ (2005). Glucocorticoid receptor polymorphisms and post-traumatic stress disorder. Psychoneuroendocrinology 30, 297306.CrossRefGoogle ScholarPubMed
Baker, DG, West, SA, Nicholson, WE, Ekhator, NN, Kasckow, JW, Hill, KK, Bruce, AB, Orth, DN, Geracioti, TD Jr. (1999). Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. American Journal of Psychiatry 156, 585588.CrossRefGoogle ScholarPubMed
Barrett, JC, Fry, B, Maller, J, Daly, MJ (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263265.CrossRefGoogle ScholarPubMed
Bernstein, DP, Fink, L (1998). Childhood Trauma Questionnaire: A Retrospective Self-Report Questionnaire and Manual. The Psychological Corporation, San Antonio, TX.Google Scholar
Blechert, J, Michael, T, Vriends, N, Margraf, J, Wilhelm, FH (2007). Fear conditioning in posttraumatic stress disorder: evidence for delayed extinction of autonomic, experiential, and behavioural responses. Behavioral Research Therapy 45, 20192033.CrossRefGoogle ScholarPubMed
Bremner, JD, Licinio, J, Darnell, A, Krystal, JH, Owens, MJ, Southwick, SM, Nemeroff, CB, Charney, DS (1997). Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. American Journal of Psychiatry 154, 624629.Google ScholarPubMed
Bremner, JD, Vermetten, E, Schmahl, C, Vaccarino, V, Vythilingam, M, Afzal, N, Grillon, C, Charney, DS (2005). Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychological Medicine 35, 791806.CrossRefGoogle ScholarPubMed
Büchel, C, Morris, J, Dolan, RJ, Friston, KJ (1998). Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron 20, 947957.CrossRefGoogle ScholarPubMed
Cordero, MI, Kruyt, ND, Merino, JJ, Sandi, C (2002). Glucocorticoid involvement in memory formation in a rat model for traumatic memory. Stress 5, 7379.CrossRefGoogle Scholar
Cohen, S, Kamarck, T, Mermelstein, R (1983). A global measure of perceived stress. Journal of Health and Social Behavior 24, 385396.CrossRefGoogle ScholarPubMed
Davis, M (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience 15, 353375.CrossRefGoogle ScholarPubMed
de Kloet, CS, Vermetten, E, Geuze, E, Lentjes, EG, Heijnen, CJ, Stalla, GK, Westenberg, HG (2008). Elevated plasma corticotrophin-releasing hormone levels in veterans with posttraumatic stress disorder. Progress in Brain Research 167, 287291.CrossRefGoogle ScholarPubMed
de Kloet, ER, Vreugdenhil, E, Oitzl, MS, Joëls, M (1998). Brain corticosteroid receptor balance in health and disease. Endocrinological Review 19, 269301.Google ScholarPubMed
Delgado, MR, Olsson, A, Phelps, EA (2006). Extending animal models of fear conditioning to humans. Biological Psychology 73, 3948.CrossRefGoogle ScholarPubMed
First, MB, Gibbon, M, Spitzer, RL, Williams, JBW, Benjamin, LS (1997 a). Users Guide for the Structured Clinical Interview for DSM-IV Axis II Personality Disorders (SCID-II). American Psychiatric Press: Washington, DC.Google Scholar
First, MB, Spitzer, RL, Gibbon, M, Williams, JBW (1997 b). Users Guide for the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I)-Clinical Version. American Psychiatric Press: Washington, DC.Google Scholar
Fowles, DC, Christie, MJ, Edelberg, R, Grings, WW, Lykken, DT, Venables, PH (1981). Committee report. Publication recommendations for electrodermal measurements. Psychophysiology 18, 232239.CrossRefGoogle ScholarPubMed
Gilbertson, MW, Shenton, ME, Ciszewski, A, Kasai, K, Lasko, NB, Orr, SP, Pitman, RK (2002). Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nature Neuroscience 5, 12421247.CrossRefGoogle ScholarPubMed
Grabe, HJ, Schwahn, C, Appel, K, Mahler, J, Schulz, A, Spitzer, C, Fenske, K, Barnow, S, Lucht, M, Freyberger, HJ, John, U, Teumer, A, Wallaschofski, H, Nauck, M, Völzke, H (2010). Childhood maltreatment, the corticotropin-releasing hormone receptor gene and adult depression in the general population. American Journal of Medical Genetics Part B Neuropsychiatric Genetics 153B, 14831493.CrossRefGoogle ScholarPubMed
Griesel, D, Wessa, M, Flor, H (2006). Psychometric qualities of the German version of the Posttraumatic Diagnostic Scale (PTDS). Psychological Assessment 18, 262268.CrossRefGoogle ScholarPubMed
Guthrie, RM, Bryant, RA (2006). Extinction learning before trauma and subsequent posttraumatic stress. Psychosomatic Medicine 68, 307311.CrossRefGoogle ScholarPubMed
Hauer, D, Weis, F, Papassotiropoulos, A, Schmoeckel, M, Beiras-Fernandez, A, Lieke, J, Kaufmann, I, Kirchhoff, F, Vogeser, M, Roozendaal, B, Briegel, J, de Quervain, D, Schelling, G (2011). Relationship of a common polymorphism of the glucocorticoid receptor gene to traumatic memories and posttraumatic stress disorder in patients after intensive care therapy. Critical Care Medicine 39, 643650.CrossRefGoogle ScholarPubMed
Heinz, A, Wrase, J, Kahnt, T, Beck, A, Bromand, Z, Grüsser, SM, Kienast, T, Smolka, MN, Flor, H, Mann, K (2007). Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcoholism: Clinical and Experimental Research 31, 11381147.CrossRefGoogle ScholarPubMed
Herry, C, Ferraguti, F, Singewald, N, Letzkus, JJ, Ehrlich, I, Lüthi, A (2010). Neuronal circuits of fear extinction. European Journal of Neuroscience 31, 599612.CrossRefGoogle ScholarPubMed
Hettema, JM, Annas, P, Neale, MC, Kendler, KS, Fredrikson, M (2003). A twin study of the genetics of fear conditioning. Archives of Genetic Psychiatry 60, 702708.CrossRefGoogle ScholarPubMed
Huizenga, NA, Koper, JW, De Lange, P, Pols, HA, Stolk, RP, Burger, H, Grobbee, DE, Brinkmann, AO, De Jong, FH, Lamberts, SW (1998). A polymorphism in the glucocorticoid receptor gene may be associated with an increased sensitivity to glucocorticoids in vivo . Journal of Clinical Endocrinology and Metabolism 83, 144151.Google ScholarPubMed
Jaferi, A, Bhatnagar, S (2007). Corticotropin-releasing hormone receptors in the medial prefrontal cortex regulate hypothalamic–pituitary–adrenal activity and anxiety-related behavior regardless of prior stress experience. Brain Research 1186, 212223.CrossRefGoogle ScholarPubMed
Jewell, CM, Cidlowski, JA (2007). Molecular evidence for a link between the N363S glucocorticoid receptor polymorphism and altered gene expression. Journal of Clinical Endocrinology and Metabolism 92, 32683277.CrossRefGoogle ScholarPubMed
Jobling, MA, Hurles, M, Tyler-Smith, C (2003). Human Evolutionary Genetics: Origins, Peoples and Disease. Garland Science: New York.Google Scholar
Jovanovic, T, Ressler, KJ (2010). How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. American Journal of Psychiatry 6, 648662.CrossRefGoogle Scholar
Jovanovic, T, Norrholm, SD, Blanding, NQ, Davis, M, Duncan, E, Bradley, B, Ressler, KJ (2010). Impaired fear inhibition is a biomarker of PTSD but not depression. Depression & Anxiety 27, 244251.CrossRefGoogle Scholar
Keller, MC, Miller, G (2006). Resolving the paradox of common, harmful, heritable mental disorders: which evolutionary genetic models work best? Behavioral and Brain Sciences 29, 385404.CrossRefGoogle ScholarPubMed
Kikusui, T, Takeuchi, Y, Mori, Y (2000). Involvement of corticotropin-releasing factor in the retrieval process of fear-conditioned ultrasonic vocalization in rats. Physiology and Behavior 71, 323328.CrossRefGoogle ScholarPubMed
Kohda, K, Harada, K, Kato, K, Hoshino, A, Motohashi, J, Yamaji, T, Morinobu, S, Matsuoka, N, Kato, N (2007). Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: a putative post-traumatic stress disorder model. Neuroscience 148, 2233.CrossRefGoogle ScholarPubMed
Kolber, BJ, Roberts, MS, Howell, MP, Wozniak, DF, Sands, MS, Muglia, LJ (2008). Central amygdala glucocorticoid receptor action promotes fear-associated CRH activation and conditioning. Proceedings of the National Academy of Sciences USA 105, 1200412009.CrossRefGoogle ScholarPubMed
Koper, JW, Stolk, RP, de Lange, P, Huizenga, NA, Molijn, GJ, Pols, HA, Grobbee, DE, Karl, M, de Jong, FH, Brinkmann, AO, Lamberts, SW (1997). Lack of association between five polymorphisms in the human glucocorticoid receptor gene and glucocorticoid resistance. Human Genetics 99, 663668.CrossRefGoogle ScholarPubMed
Kumsta, R, Entringer, S, Koper, JW, van Rossum, EF, Hellhammer, DH, Wüst, S (2008). Glucocorticoid receptor gene polymorphisms and glucocorticoid sensitivity of subdermal blood vessels and leukocytes. Biological Psychology 79, 179184.CrossRefGoogle ScholarPubMed
LeDoux, JE (2000). Emotion circuits in the brain. Annual Review of Neuroscience 23, 155184.CrossRefGoogle ScholarPubMed
Lonsdorf, TB, Weike, AI, Nikamo, P, Schalling, M, Hamm, AO, Ohman, A (2009). Genetic gating of human fear learning and extinction: possible implications for gene–environment interaction in anxiety disorder. Psychological Sciences 20, 198206.CrossRefGoogle ScholarPubMed
McFarlane, AC, Barton, CA, Yehuda, R, Wittert, G (2011). Cortisol response to acute trauma and risk of posttraumatic stress disorder. Psychoneuroendocrinology 36, 720727.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A (2010) Intermediate or brainless phenotypes for psychiatric research? Psychological Medicine 40, 10571062.CrossRefGoogle ScholarPubMed
Milad, MR, Quirk, GJ (2002). Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 7074.CrossRefGoogle ScholarPubMed
Müller, MB, Zimmermann, S, Sillaber, I, Hagemeyer, TP, Deussing, JM, Timpl, P, Kormann, MS, Droste, SK, Kühn, R, Reul, JM, Holsboer, F, Wurst, W (2003). Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nature Neuroscience 6, 11001107.CrossRefGoogle ScholarPubMed
Nelson, EC, Agrawal, A, Pergadia, ML, Wang, JC, Whitfield, JB, Saccone, FS, Kern, J, Grant, JD, Schrage, AJ, Rice, JP, Montgomery, GW, Heath, AC, Goate, AM, Martin, NG, Madden, PA (2010). H2 haplotype at chromosome 17q21.31 protects against childhood sexual abuse-associated risk for alcohol consumption and dependence. Addiction Biology 15, 111.CrossRefGoogle ScholarPubMed
Oitzl, MS, Fluttert, M, Sutanto, W, de Kloet, ER (1998). Continuous blockade of brain glucocorticoid receptors facilitates spatial learning and memory in rats. European Journal of Neuroscience 10, 37593766.CrossRefGoogle ScholarPubMed
Otagiri, A, Wakabayashi, I, Shibasaki, T (2000). Selective corticotropin-releasing factor type 1 receptor antagonist blocks conditioned fear-induced release of noradrenaline in the hypothalamic paraventricular nucleus of rats. Journal of Neuroendocrinology 12, 10221026.CrossRefGoogle ScholarPubMed
Peters, J, Kalivas, PW, Quirk, GJ (2009). Extinction circuits for fear and addiction overlap in prefrontal cortex. Learning and Memory 16, 279288.CrossRefGoogle ScholarPubMed
Pitman, RK, Gilbertson, MW, Gurvits, TV, May, FS, Lasko, NB, Metzger, LJ, Shenton, ME, Yehuda, R, Orr, SP; Harvard/VA PTSD Twin Study Investigators (2006). Clarifying the origin of biological abnormalities in PTSD through the study of identical twins discordant for combat exposure. Annals of the New York Academy of Sciences 1071, 242254.CrossRefGoogle Scholar
Prokasy, WF, Ebel, HC (1967). GSR conditioning and sensitization as a function of intertrial interval. Journal of Experimental Psychology 73, 247256.CrossRefGoogle Scholar
Radloff, LS (1977). The CES-D Scale: a self report depression scale for research in the general population. Applied Psychological Measurement 1, 385401.CrossRefGoogle Scholar
Radulovic, J, Rühmann, A, Liepold, T, Spiess, J (1999). Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. Journal of Neuroscience 19, 50165025.CrossRefGoogle ScholarPubMed
Rauch, SL, Shin, LM, Phelps, EA (2006). Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research – past, present, and future. Biological Psychiatry 15, 376382.CrossRefGoogle Scholar
Ressler, KJ, Mercer, KB, Bradley, B, Jovanovic, T, Mahan, A, Kerley, K, Norrholm, SD, Kilaru, V, Smith, AK, Myers, AJ, Ramirez, M, Engel, A, Hammack, SE, Toufexis, D, Braas, KM, Binder, EB, May, V (2011). Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470, 492497.CrossRefGoogle ScholarPubMed
Rodrigues, SM, LeDoux, JE, Sapolsky, RM (2009). The influence of stress hormones on fear circuitry. Annual Review of Neuroscience 32, 289313.CrossRefGoogle ScholarPubMed
Rohleder, N, Joksimovic, L, Wolf, JM, Kirschbaum, C (2004). Hypocortisolism and increased glucocorticoid sensitivity of pro-inflammatory cytokine production in Bosnian war refugees with posttraumatic stress disorder. Biological Psychiatry 55, 745751.CrossRefGoogle ScholarPubMed
Roozendaal, B, McReynolds, JR, Van der Zee, EA, Lee, S, McGaugh, JL, McIntyre, CK (2009). Glucocorticoid effects on memory consolidation depend on functional interactions between the medial prefrontal cortex and basolateral amygdala. Journal of Neuroscience 29, 1429914308.CrossRefGoogle ScholarPubMed
Rosmond, R, Chagnon, YC, Chagnon, M, Pérusse, L, Bouchard, C, Björntorp, P (2000). A polymorphism of the 5'-flanking region of the glucocorticoid receptor gene locus is associated with basal cortisol secretion in men. Metabolism 49, 11971199.CrossRefGoogle ScholarPubMed
Shin, LM, Liberzon, I (2010). The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35, 169191.CrossRefGoogle ScholarPubMed
Spielberger, CD, Gorsuch, RL, Lushene, RE (1970). Manual for the State-Trait Anxiety Inventory. Consulting Psychologists Press: Palo Alto.Google Scholar
Stevens, A, Ray, DW, Zeggini, E, John, S, Richards, HL, Griffiths, CE, Donn, R (2004). Glucocorticoid sensitivity is determined by a specific glucocorticoid receptor haplotype. Journal of Clinical Endocrinology and Metabolism 89, 892897.CrossRefGoogle ScholarPubMed
Timpl, P, Spanagel, R, Sillaber, I, Kresse, A, Reul, JM, Stalla, GK, Blanquet, V, Steckler, T, Holsboer, F, Wurst, W (1998). Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nature Genetics 19, 162166.CrossRefGoogle ScholarPubMed
Treutlein, J, Kissling, C, Frank, J, Wiemann, S, Dong, L, Depner, M, Saam, C, Lascorz, J, Soyka, M, Preuss, UW, Rujescu, D, Skowronek, MH, Rietschel, M, Spanagel, R, Heinz, A, Laucht, M, Mann, K, Schumann, G (2006). Genetic association of the human corticotropin releasing hormone receptor 1 (CRHR1) with binge drinking and alcohol intake patterns in two independent samples. Molecular Psychiatry 11, 594602.CrossRefGoogle ScholarPubMed
Tronel, S, Alberini, CM (2007). Persistent disruption of a traumatic memory by postretrieval inactivation of glucocorticoid receptors in the amygdala. Biological Psychiatry 62, 3339.CrossRefGoogle ScholarPubMed
van Rossum, EF, Koper, JW, van den Beld, AW, Uitterlinden, AG, Arp, P, Ester, W, Janssen, JA, Brinkmann, AO, de Jong, FH, Grobbee, DE, Pols, HA, Lamberts, SW (2003). Identification of the BclI polymorphism in the glucocorticoid receptor gene: association with sensitivity to glucocorticoids in vivo and body mass index. Clinical Endocrinology (Oxford) 59, 585592.CrossRefGoogle ScholarPubMed
Wasserman, D, Wasserman, J, Rozanov, V, Sokolowski, M (2009). Depression in suicidal males: genetic risk variants in the CRHR1 gene. Genes Brain and Behavior 8, 7279.CrossRefGoogle ScholarPubMed
Wessa, M, Rohleder, N (2007). Endocrine and inflammatory alterations in posttraumatic stress disorder. Expert Review of Endocrinology and Metabolism 2, 91–122.CrossRefGoogle Scholar
Wigginton, JE, Cutler, DJ, Abecasis, GR (2005). A note on exact tests of Hardy–Weinberg equilibrium. American Journal of Human Genetics 76, 887893.CrossRefGoogle ScholarPubMed
Yang, YL, Chao, PK, Lu, KT (2006). Systemic and intra-amygdala administration of glucocorticoid agonist and antagonist modulate extinction of conditioned fear. Neuropsychopharmacology 31, 912924.CrossRefGoogle ScholarPubMed
Yehuda, R (2006). Advances in understanding neuroendocrine alterations in PTSD and their therapeutic implications. Annals of the New York Academy of Sciences 1071, 137166.CrossRefGoogle ScholarPubMed
Yehuda, R, Cai, G, Golier, JA, Sarapas, C, Galea, S, Ising, M, Rein, T, Schmeidler, J, Müller-Myhsok, B, Holsboer, F, Buxbaum, JD (2009). Gene expression patterns associated with posttraumatic stress disorder following exposure to the World Trade Center attacks. Biological Psychiatry 66, 708711.CrossRefGoogle Scholar
Yehuda, R, Flory, JD, Pratchett, LC, Buxbaum, J, Ising, M, Holsboer, F (2010). Putative biological mechanisms for the association between early life adversity and the subsequent development of PTSD. Psychopharmacology 212, 405417.CrossRefGoogle ScholarPubMed
Yehuda, R, Golier, JA, Yang, RK, Tischler, L (2004). Enhanced sensitivity to glucocorticoids in peripheral mononuclear leukocytes in posttraumatic stress disorder. Biological Psychiatry 55, 11101116.CrossRefGoogle ScholarPubMed
Yehuda, R, LeDoux, J (2007). Response variation following trauma: a translational neuroscience approach to understanding PTSD. Neuron 56, 1932.CrossRefGoogle ScholarPubMed
Figure 0

Table 1. Clinical characteristics of the participants

Figure 1

Table 2. Allele frequencies and genotype counts for the polymorphisms that contributed significantly to the association signals in the two samples

Figure 2

Fig. 1. Fear-conditioning paradigm. CS+, Neutral conditioned stimulus (yellow rhombus) later followed by an aversive unconditioned stimulus (US), an electric shock (red flash); ITI, inter-trial interval; CS−, neutral stimulus (blue square) later followed by the absence of the US.

Figure 3

Fig. 2. (a) Increased activity in the left amygdala elicited by CS+ versus CS- in the first half of the acquisition as a function of NR3C1 genotype, coded 0 for no minor allele (), 1 for one or two minor alleles (□), 2 for more than two minor alleles () (for sample 1, group 0: n=26, group 1: n=26, group 2: n=8; for sample 2, group 0: n=16, group 1: n=30, group 2: n=6). CS+, neutral conditioned stimulus later followed by the aversive unconditioned stimulus (US); CS-, neutral stimulus later followed by the absence of the US. Values are means, with 95% confidence intervals (CIs) represented by vertical bars. * p<0.05. (b) Genotype-dependent differential activation of the prefrontal cortex during extinction involving CRHR1 and NR3C1 genotypes (coded 0 for no minor allele (), 1 for one minor allele (□), 2 for more than one minor allele () (for sample 1, group 0: n=12, group 1: n=24, group 2: n=23; for sample 2, group 0: n=13, group 1: n=20, group 2: n=19). BA, Brodmann area. Values are means, with 95% CIs represented by vertical bars. * p<0.05. (c) T maps revealing increases in functional coupling for the contrasts between genotype group 2 versus groups 0 and 1 during the early acquisition phase (left panel) and genotype-dependent functional coupling during early acquisition between the left amygdala and prefrontal cortex (right panel). Group 0, no minor allele (); group 1, one minor allele (□); group 2, more than one minor allele (); AU, arbitrary units at the target-region peak voxels. Values are means, with 95% CIs represented by vertical bars. (d) t Maps revealing increases in functional coupling for the contrasts between the genotype groups during the extinction phase (left panel) and coupling strength for the extinction phase between the left prefrontal cortex and left amygdala (right panel). Group 0, no minor allele (); group 1, one minor allele (□); group 2, more than one minor allele (). Values are means, with 95% CIs represented by vertical bars.

Figure 4

Table 3. Peak voxel values of functional coupling analysis in sample 1 showing increased coupling for the genotype group coded 2 as compared with genotype groups 0 and 1a

Supplementary material: File

Ridder Supplementary Material

Tables

Download Ridder Supplementary Material(File)
File 87 KB