Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:57:01.598Z Has data issue: false hasContentIssue false

Texture-engineered ceramics—Property enhancements through crystallographic tailoring

Published online by Cambridge University Press:  27 June 2017

Gary L. Messing*
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Stephen Poterala
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Yunfei Chang
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Tobias Frueh
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Elizabeth R. Kupp
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Beecher H. Watson III
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Rebecca L. Walton
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Michael J. Brova
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Anna-Katharina Hofer
Affiliation:
Institut für Struktur- und Funktionskeramik, Montanuniversitaet Leoben, Leoben 8700, Austria
Raul Bermejo
Affiliation:
Institut für Struktur- und Funktionskeramik, Montanuniversitaet Leoben, Leoben 8700, Austria
Richard J. Meyer Jr.
Affiliation:
Applied Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
*
a)Address all correspondence to this author. e-mail: messing@ems.psu.edu
Get access

Abstract

Texture-engineered ceramics enable access to a vast array of novel texture-property relations leading to property values ranging between those of single crystals and isotropic bulk ceramics. Recently developed templated grain growth and magnetic alignment texturing methods yield high quality crystallographic texture, and thus significant advances in achievable texture-engineered properties in magnetic, piezoelectric, electronic, optical, thermoelectric, and structural ceramics. In this paper, we outline the fundamental basis for these texture-engineered properties and review recent contributions to the field of texture-engineered ceramics with an update on the properties of textured lead-free and lead-based piezoelectrics. We propose that further property improvements can be realized through development of processes that improve crystallographic alignment of the grain structure, create biaxial texture, and explore a wider array of crystallographic orientations. There is a critical need to model the physics of texture-engineered ceramics, and more comprehensively characterize texture, thus enabling testing of texture orientation-property relations and materials performance. We believe that in situ measurements of texture evolution can lead to a more fundamental and comprehensive understanding of the mechanisms of texture development.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was Editor in Chief during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Contributing Editor: Nahum Travitzky

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Rathenau, G.W., Smit, J., and Stuyts, A.L.: Ferromagnetic properties of hexagonal iron-oxide compounds with and without a preferred orientation. Z. Physik 133, 250 (1952).Google Scholar
Messing, G.L., Trolier-McKinstry, T., Sabolsky, E.M., Duran, C., Kwon, S., Brahmaroutu, B., Park, P., Yilmaz, H., Rehrig, P.W., Eitel, K.B., Suvaci, E., Seabaugh, M., and Oh, K.S.: Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 29, 45 (2004).CrossRefGoogle Scholar
Jin, S. and Graebner, J.E.: Processing and fabrication techniques for bulk high-T c superconductors: A critical review. Mater. Sci. Eng., B 7, 243 (1991).CrossRefGoogle Scholar
Guilmeau, E., Itahara, H., Tani, T., Chateigner, D., and Grebille, D.: Quantitative texture analysis of grain-aligned (Ca2CoO3)0.62CoO2 ceramics processed by the reactive-templated grain growth method. J. Appl. Phys. 97, 064902 (2005).Google Scholar
Mao, X., Wang, S., Shimai, S., and Guo, J.: Transparent polycrystalline alumina ceramics with orientated optical axes. J. Am. Ceram. Soc. 91, 3431 (2008).Google Scholar
Imamura, H., Hirao, K., Brito, M.E., Toriyama, M., and Kanzaki, S.: Further improvement in mechanical properties of highly anisotropic silicon nitride ceramics. J. Am. Ceram. Soc. 83, 495 (2000).CrossRefGoogle Scholar
Youngblood, G.E. and Gordon, R.S.: Texture-conductivity relationships in polycrystalline lithia-stabilized β″-alumina. Ceramurgia Intl. 4, 93 (1978).Google Scholar
Heuer, A.H., Sellers, D.J., and Rhodes, W.H.: Hot-working of aluminum oxide: I. Primary recrystallization and texture. J. Am. Ceram. Soc. 52, 468 (1969).Google Scholar
Carman, A., Pereloma, E., and Chen, Y.: Hot forging of a textured α-SiAlON ceramic. J. Am. Ceram. Soc. 89, 478 (2006).CrossRefGoogle Scholar
Went, J.J., Rathenau, G.W., Gorter, E.W., and van Oosterhout, G.W.: Hexagonal iron-oxide compounds as permanent-magnet materials. Phys. Rev. 86, 424 (1952).CrossRefGoogle Scholar
Goyal, A., Feenstra, R., List, F.A., Paranthaman, M., Lee, D.F., Kroeger, D.M., Beach, D.B., Morrell, J.S., Chirayil, T.G., Verebelyi, D.T., Cui, X., Specht, E.D., Christen, D.K., and Martin, P.M.: Using RABiTS to fabricate high-temperature superconducting wire. JOM 51, 19 (1999).Google Scholar
Jin, S., Sherwood, R.C., Dover, R.B. van, Tiefel, T.H., and Johnson, D.W. Jr.: High TC superconductors-composite wire fabrication. Appl. Phys. Lett. 51, 203 (1987).Google Scholar
Tani, T.: Texture engineering of electronic ceramics by the reactive-templated grain growth method. J. Ceram. Soc. Jpn. 114, 363 (2006).CrossRefGoogle Scholar
Yilmaz, H., Messing, G.L., and Trolier-McKinstry, S.: (Reactive) templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3–BaTiO3) ceramics–I. Processing. J. Electroceram. 11, 207 (2003).Google Scholar
Sakka, Y. and Suzuki, T.S.: Textured development of feeble magnetic ceramics by colloidal processing under high magnetic field. J. Ceram. Soc. Jpn. 113, 26 (2005).Google Scholar
Seabaugh, M.M., Kerscht, I.H., and Messing, G.L.: Texture development by templated grain growth in liquid phase sintered α-alumina. J. Am. Ceram. Soc. 80, 1181 (1997).Google Scholar
Suzuki, T.S., Uchikoshi, T., and Sakka, Y.: Control of texture in alumina by colloidal processing in a strong magnetic field. Sci. Technol. Adv. Mater. 7, 356 (2006).CrossRefGoogle Scholar
Jones, J.L., Iverson, B.J., and Bowman, K.J.: Texture and anisotropy of polycrystalline piezoelectrics. J. Am. Ceram. Soc. 90, 2297 (2007).CrossRefGoogle Scholar
Lotgering, F.K.: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. J. Inorg. Nucl. Chem. 9, 113 (1959).Google Scholar
Brosnan, K.H., Messing, G.L., Meyer, R.J. Jr., and Vaudin, M.D.: Texture measurements in 〈001〉 fiber-oriented PMN–PT. J. Am. Ceram. Soc. 89, 1965 (2006).Google Scholar
Dollase, W.A.: Correction for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Crystallogr. 19, 267 (1986).Google Scholar
Landau, L.D., Pitaevskii, L.P., and Liftshitz, E.M.: Electrodynamics of Continuous Media, 2nd ed., Vol. 8, Course of Theoretical Physics (Oxford University Press, Oxford, England, 2004).Google Scholar
Pullar, R.C.: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191 (2012).Google Scholar
Stuijts, A.L., Rathenau, G.W., and Weber, G.H.: Ferroxdure II and III, anisotropic permanent magnet materials. In Ferrites, Smit, J. and Wijn, H.P.J., eds., Vol. 16 (Philips Technical Library, Eindhoven, Netherlands, 1959); p. 141.Google Scholar
Chen, Y., Daigle, A., Fitchorov, T., Hu, B., Geiler, M., and Geiler, A.: Electronic tuning of magnetic permeability in Co2Z hexaferrite toward high frequency electromagnetic device miniaturization. Appl. Phys. Lett. 98, 202502 (2011).Google Scholar
Jian, G., Meng, F., Zhou, D., Fu, Q., Du, Z., and Yan, C.: Fabrication of textured CoFe2O4 ceramics by novel RTGG method using rod-like α-FeOOH particles as templates. Mater. Chem. Phys. 162, 380 (2015).Google Scholar
Chang, P., He, L., Wei, D., and Wang, H.: Textured z-type hexaferrite Ba3Co2Fe24O41, ceramics with high permeability by reactive templated grain growth method. J. Eur. Ceram. Soc. 36, 2519 (2016).CrossRefGoogle Scholar
Rush, J.P., May-Miller, C.J., Palmer, K.G.B., Rutter, N.A., Dennis, A.R., Shi, Y-H., Cardwell, D.A., and Durrell, J.H.: Transport J c in bulk superconductors: A practical approach?. IEEE Trans. Appl. Supercond. 26, 6800904 (2016).Google Scholar
Raveau, B.: Texturing of high-T c superconductors. Supercond. Sci. Technol. 12, R115 (1999).Google Scholar
His, C., Chardon, N., Kuentzler, R., and Vilminot, S.: Elaboration and characterization of YBa2Cu3O7−x thick tapes. J. Mater. Sci. 26, 4829 (1991).Google Scholar
Feldmann, D.M., Holesinger, T.G., Feenstra, R., and Larbalestier, D.C.: A review of the influence of grain boundary geometry on the electromagnetic properties of polycrystalline YBa2Cu3O7−x films. J. Am. Ceram. Soc. 91, 1869 (2008).CrossRefGoogle Scholar
Goyal, A., Paranthaman, M.P., and Schopp, U.: The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull. 29, 552 (2004).Google Scholar
Susner, M.A., Daniels, T.W., Sumption, M.D., Rindfleisch, M.A., Thong, C.J., and Collings, E.W.: Drawing induced texture and the evolution of superconductive properties with heat treatment time in powder-in-tube in situ processed MgB2 strands. Supercond. Sci. Tech. 25, 065002 (2012).CrossRefGoogle Scholar
Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F.K.: Orientation dependence of grain-boundary critical currents in YBa2Cu3O7−δ bicrystals. Phys. Rev. Lett. 61, 219 (1988).Google Scholar
Li, G-Z., Li, J-W., and Yang, W-M.: A combined powder melt and infiltration growth technique for fabricating nano-composited Y−Ba−Cu−O single-grain superconductor. Supercond. Sci. Technol. 28, 105002 (2015).CrossRefGoogle Scholar
Shi, Y., Durrell, J.H., Dennis, A.R., Huang, K., Namburi, D.K., Zhou, D., and Cardwell, D.A.: Multiple seeding for the growth of bulk GdBCO-Ag superconductors with single grain behaviour. Supercond. Sci. Technol. 30, 015003 (2017).Google Scholar
Bhargava, A., Schwartz, J., Alarco, J.A., and Mackinnon, I.D.R.: Progress towards slip-casting YBa2Cu3O7−x monoliths. Mater. Lett. 30, 199 (1997).Google Scholar
Pathak, L.C.: Fabrication and sintering characteristics of doctor blade YBCO-Ag tapes. Ceram. Int. 30, 417 (2004).Google Scholar
Dorris, S.E., Lanagan, M.T., Moffatt, D.M., Leu, H.J., Youngdahl, C.A., Balachandran, U., Cazzato, A., Bloomberg, D.E., and Goretta, K.C.: Y2BaCuO5 as a substrate for YBa2Cu3O x . Jpn. J. Appl. Phys. 28, 1415 (1989).Google Scholar
McGinn, P.J., Chen, W., Zhu, N., Balachandran, U., and Lanagan, M.T.: Texture processing of extruded YBa2Cu3O6+x wires by zone melting. Phys. C 165, 480 (1990).Google Scholar
Grader, G.S. and Johnson, D.W. Jr.: Forming methods for high T c superconductors. Thermochim. Acta 174, 239 (1991).Google Scholar
Frase, K.G., Farrington, G.C., and Thomas, J.O.: Proton transport in the β/β″-aluminas. Annu. Rev. Mater. Sci. 14, 279 (1984).Google Scholar
Beckers, J.V.L., van der Bent, K.J., and de Leeuw, S.W.: Ionic conduction in Na+-β-alumina studied by molecular dynamics simulation. Solid State Ionics 133, 217 (2000).Google Scholar
Fergus, J.W.: Ion transport in sodium ion conducting solid electrolytes. Solid State Ionics 227, 102 (2012).Google Scholar
de Jonghe, L.C. and Hall, J.B.: Ion current concentration in grain boundaries of sodium beta alumina. Scr. Mater. 10, 285 (1976).Google Scholar
De Jonghe, L.C.: Grain boundaries and ionic conduction in sodium beta alumina. J. Mater. Sci. 14, 33 (1979).CrossRefGoogle Scholar
Kuo, C.K., Tan, A., and Nicholson, P.S.: Solid state ionics impedance analysis as a tool for designing β″-alumina microstructures. Solid State Ionics 48, 315 (1991).Google Scholar
Kishimoto, A. and Shimokawa, K.: Preferential orientation dependent mechanical and electrical properties in Naβ-alumina ceramics. Key Eng. Mater. 301, 147 (2006).Google Scholar
Hooper, A.: A study oft he electrical properties of single-crystal and polycrystalline β-alumina using complex plane analysis. J. Phys. D: Appl. Phys. 10, 1487 (1977).Google Scholar
Tan, A., Kuo, C.K., and Nicholson, P.S.: Preparation and characterization of textured polycrystalline Na and K-β-aluminas. Solid State Ionics 42, 233 (1990).Google Scholar
Tan, A., Kun Kuo, C., and Nicholson, P.S.: The influence of grain-boundaries on the conductivity and ion-exchange rate of β″-alumina polycrystalline isomorphs. Solid State Ionics 45, 137 (1991).CrossRefGoogle Scholar
Ohta, T., Harata, M., and Imai, A.: Preferred orientation on beta-alumina ceramics. Mater. Res. Bull. 11, 1343 (1976).CrossRefGoogle Scholar
Virkar, A.V., Miller, G.R., and Gordon, R.S.: Resistivity-microstructure relations in lithia-stabilized polycrystalline β″-alumina. J. Am. Ceram. Soc. 61, 250 (1978).Google Scholar
Butchereit, E., Schoonman, J., Zandbergen, H.W., Lutz-Elsner, C., Schreiber, M., and Wang, P.: Microstructure-conductivity relationships in solid anisotropic ionically conducting materials. Mater. Res. Soc. Symp. Proc. 369, 433 (1995).CrossRefGoogle Scholar
De Kroon, A.P., Gstrein, F., Schafer, G.W., and Aldinger, F.: Ionic conductivity of dense K-β-alumina ceramics: Microstructural dependence and the influence of phase transformations. Solid State Ionics 133, 107 (2000).CrossRefGoogle Scholar
Asaoka, H., Ogawa, R., Hayashi, H., and Kishimoto, A.: Influence of kinds of aluminum source on the preferential orientation and properties of Naβ-alumina ceramics. J. Ceram. Soc. Jpn. 114, 719 (2006).Google Scholar
Shi, J.L., Gao, J.H., and Lin, Z.X.: The relation between microstructure and ionic conductivity of hot-pressed β-Al2O3 . J. Mater. Sci. 24, 1827 (1989).CrossRefGoogle Scholar
Koganei, K., Oyama, T., Inada, M., Enomoto, N., and Hayashi, K.: C-axis oriented β″-alumina ceramics with anisotropic ionic conductivity prepared by spark plasma sintering. Solid State Ionics 267, 22 (2014).Google Scholar
Subasri, R. and Näfe, H.: Texture in Na-β-Al2O3 due to microwave processing. Mater. Chem. Phys. 112, 16 (2008).CrossRefGoogle Scholar
Sakka, Y., Honda, A., Suzuki, T.S., and Moriyoshi, Y.: Fabrication of oriented ß-alumina from porous bodies by slip casting in a high magnetic field. Solid State Ionics 172, 341 (2004).CrossRefGoogle Scholar
Sakka, Y., Suzuki, T.S., and Uchikoshi, T.: Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering. J. Eur. Ceram. Soc. 28, 935 (2008).Google Scholar
Kharton, V.V., Marques, F.M.B., and Atkinson, A.: Transport properties of solid oxide electrolyte ceramics: A brief review. Solid State Ionics 174, 135 (2004).Google Scholar
Kendall, K.R., Navas, C., Thomas, J.K., and Zur Loye, H-C.: Recent developments in oxide ion conductors: Aurivillius phases. Chem. Mater. 8, 642 (1996).Google Scholar
Mahato, N., Banerjee, A., Gupta, A., Omar, S., and Balani, K.: Progress in material selection for solid state oxide fuel cell technology: A review. Prog. Mater. Sci. 72, 141 (2015).Google Scholar
Malavasi, L., Fisher, C.A.J., and Islam, M.S.: Oxide-ion and proton conducting electrolyte materials for clean energy applications: Structural and mechanistic features. Chem. Soc. Rev. 39, 4370 (2010).Google Scholar
Fukuda, K., Asaka, T., Hara, S., Oyabu, M., Berghout, A., Béchade, E., Masson, O., Julien, I., and Thomas, P.: Crystal structure and oxide-ion conductivity along c-axis of Si-deficient apatite-type lanthanum silicate. Chem. Mater. 25, 2154 (2013).CrossRefGoogle Scholar
Fukuda, K., Okabe, M., and Asaka, T.: Microtexture of c-axis-oriented polycrystalline lanthanum silicate oxyapatite formed by reactive diffusion. J. Am. Ceram. Soc. 99, 2816 (2016).Google Scholar
Medlin, D.L. and Snyder, G.J.: Interfaces in bulk thermoelectric materials: A review for current opinion in colloid and interface science. Curr. Opin. Colloid Interface Sci. 14, 226 (2009).Google Scholar
Ohta, H., Seo, W-S., and Koumoto, K.: Thermoelectric properties of homologous compounds in the ZnO–In2O3 system. J. Am. Ceram. Soc. 79, 2193 (1996).Google Scholar
Terasaki, I., Sasago, Y., and Uchinokura, K.: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 56, R12685 (1997).Google Scholar
Li, S., Funahashi, R., Matsubara, I., Ueno, K., and Yamada, H.: High temperature thermoelectric properties of oxide Ca9Co12O28 . J. Mater. Chem. 9, 1659 (1999).Google Scholar
J. Hejtmánek, M. Veverka, K. Knížek, H. Fujishiro, S. Hebert, Y. Klein, A. Maignan, C. Bellouard, and B. Lenoir: Cobaltites as Perspective Thermoelectrics, edited by J. Yang (Mater. Res. Soc. Symp. Proc. 886, Warrendale, PA, 2006) 1274-F01-07.1.Google Scholar
Itahara, H., Tajima, S., and Tani, T.: Synthesis of β-Co(OH)2 platelets by precipitation and hydrothermal methods. J. Ceram. Soc. Jpn. 110, 1048 (2002).CrossRefGoogle Scholar
Koumoto, K., Funahashi, R., Guilmeau, E., Miyazaki, Y., Weidenkaff, A., Wang, Y., and Wan, C.: Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96(1), 1 (2013).CrossRefGoogle Scholar
Zhou, Y., Matsubara, I., Horii, S., Takeuchi, T., Funahashi, R., Shikano, M., Shimoyama, J., Kishio, K., Shin, W., Izu, N., and Murayama, N.: Thermoelectric properties of highly grain-aligned and densified Co-based oxide ceramics. J. Appl. Phys. 93, 2653 (2003).Google Scholar
Funahashi, R., Urata, S., Sano, T., and Kitawaki, M.: Enhancement of thermoelectric figure of merit by incorporation of large single crystals in Ca3Co4O9 bulk materials. J. Mater. Res. 18, 1646 (2003).Google Scholar
Prevel, M., Reddy, E.S., Perez, O., Kobayashi, W., Terasaki, I., Goupil, C., and Noudem, J.G.: Thermoelectric properties of sintered and textured Nd-Substituted Ca3Co4O9 ceramics. JJAP 46, 97 (2007).Google Scholar
Prevel, M., Lemonnier, S., Klein, Y., Hebert, S., Chateigner, D., Ouladdiaf, B., and Noudem, J.G.: Textured Ca3Co4O9 thermoelectric oxides by thermoforging process. J. Appl. Phys. 98, 093706 (2005).Google Scholar
Guilmeau, E., Funahashi, R., Mikami, M., Chong, K., and Chateigner, D.: Thermoelectric properties-texture relationship in highly oriented Ca3Co4O9 composited. Appl. Phys. Lett. 85, 1490 (2004).Google Scholar
Liu, Y.H., Lin, Y.H., Shi, Z., Nan, C.W., and Shen, Z.J.: Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering. J. Am. Ceram. Soc. 88, 1337 (2005).Google Scholar
Liu, H.Q., Song, Y., Zhang, S.N., Zhao, X.B., and Wang, F.R.: Thermoelectric properties of Ca3−x Y x Co4O9+δ ceramics. J. Phys. Chem. Solids 70, 600 (2009).Google Scholar
Noudem, J.G., Kenfaui, D., Chateigner, D., and Gomina, M.: Granular and lamellar thermoelectric oxides consolidated by spark plasma sintering. J. Electron. Mater. 40, 1100 (2011).Google Scholar
Itahara, H., Sugiyama, J., and Tani, T.: Enhancement of electrical conductivity in thermoelectric [Ca2CoO3]0.62[CoO2] ceramics by texture improvement. Jpn. J. Appl. Phys. 43, 5134 (2004).Google Scholar
Lee, S., Wilke, R.H.T., Trolier-McKinstry, S., Zhang, S., and Randall, C.A.: Sr x Ba1−x Nb2O6−δ ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor. Appl. Phys. Lett. 96, 031910 (2010).Google Scholar
Lee, S., Dursun, S., Duran, C., and Randall, C.A.: Thermoelectric power factor enhancement of textured ferroelectric Sr x Ba1−x Nb2O6−δ . J. Mater. Res. 26(1), 26 (2011).Google Scholar
Miwa, Y., Kawada, S., Kimura, M., Omiya, S., Kubodera, N., Ando, A., Suzuki, T.S., Uchikoshi, T., and Sakka, Y.: Processing and enhanced piezoelectric properties of highly oriented compositionally modified Pb(Zr,Ti)O3 ceramics fabricated by magnetic alignment. Appl. Phys. Express 8, 041501 (2015).Google Scholar
Sabolsky, E.M., Trolier-McKinstry, S., and Messing, G.L.: Dielectric and piezoelectric properties of 〈001〉 fiber-textured 0.675 Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics. J. Appl. Phys. 93, 4072 (2003).Google Scholar
Richter, T., Denneler, S., Schuh, C., Suvaci, E., and Moos, R.: Textured PMN–PT and PMN–PZT. J. Am. Ceram. Soc. 91, 929 (2008).CrossRefGoogle Scholar
Yan, Y., Wang, Y.U., and Priya, S.: Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics. Appl. Phys. Lett. 100, 192950 (2012).Google Scholar
Brosnan, K.H.: Processing, properties, and application of textured 0.72Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 ceramics. Ph.D thesis, Pennsylvania State University, 2007.Google Scholar
Amorin, H., Ursic, H., Ramos, P., Holc, J., Moreno, R., Chateigner, D., Ricote, J., and Alguero, M.: Pb(Mg1/3Nb2/3)O3–PbTiO3 textured ceramics with high piezoelectric response by a novel templated grain growth approach. J. Am. Ceram. Soc. 97, 420 (2014).Google Scholar
Poterala, S.F., Trolier-McKinstry, S., Meyer, R.J. Jr., and Messing, G.L.: Processing, texture quality, and piezoelectric properties of 〈001〉C textured (1 − x)Pb(Mg1/3Nb2/3)TiO3xPbTiO3 ceramics. J. Appl. Phys. 110, 14105 (2011).CrossRefGoogle Scholar
Yan, Y., Yang, L., Zhou, Y., Cho, K.H., Heo, J.S., and Priya, S.: Enhanced temperature stability in 〈111〉textured tetragonal Pb(Mg1/3Nb2/3)O3–PbTiO3 piezoelectric ceramics. J. Appl. Phys. 118, 104101 (2015).Google Scholar
Yan, Y., Zhou, J.E., Maurya, D., Wang, Y.U., and Priya, S.: Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nat. Commun. 7, 1 (2016).Google Scholar
Chang, Y., Wu, J., Sun, Y., Zhang, S., Wang, X., Yang, B., Messing, G.L., and Cao, W.: Enhanced electromechanical properties and phase transition temperatures in [001] textured Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary ceramics. Appl. Phys. Lett. 107, 82902 (2015).Google Scholar
Wei, D., Yuan, Q., Zhang, G., and Wang, H.: Templated grain growth and piezoelectric properties of 〈001〉-textured PIN–PMN–PT ceramics. J. Mater. Res. 30, 2144 (2015).Google Scholar
Duran, C., Dursun, S., and Akça, E.: High strain, 〈001〉-textured Pb(Mg1/3Nb2/3)O3–Pb(Yb1/2Nb1/2)O3–PbTiO3 piezoelectric ceramics. Scr. Mater. 113, 14 (2016).Google Scholar
Yan, Y., Cho, K., Maurya, D., Kumar, A., Kalinin, S., Armen, K., and Priya, S.: Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 piezoelectric ceramics. Appl. Phys. Lett. 102, 42903 (2013).Google Scholar
Yan, Y. and Priya, S.: Strong piezoelectric anisotropy d 15/d 33 in 〈111〉 textured Pb(Mg1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics. Appl. Phys. Lett. 107, 82909 (2015).Google Scholar
Zhang, S.J., Luo, J., Hackenberger, W., Sherlock, N.P., Meyer, R.J. Jr., and Shrout, T.R.: Electromechanical characterization of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)–PbTiO3 crystals as a function of crystallographic orientation and temperature. J. Appl. Phys. 105, 104506 (2009).Google Scholar
Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432, 84 (2004).Google Scholar
Yang, Z.P., Chang, Y.F., and Wei, L.L.: Phase transitional behavior and electrical properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96−x Ta x Sb0.04)O3 piezoelectric ceramics. Appl. Phys. Lett. 90, 042911 (2007).Google Scholar
Wu, J.G. and Xiao, D.Q.: Compositional dependence of phase structure and electrical properties in (K0.42Na0.58)NbO3–LiSbO3 lead-free ceramics. J. Appl. Phys. 102, 114113 (2007).Google Scholar
Fuentes, J., Portelles, J., Durruthy-Rodriguez, M.D., H’Mok, H., Raymond, O., Heiras, J., Cruz, M.P., and Siqueiros, J.M.: Dielectric and piezoelectric properties of the KNN ceramic compound doped with Li, La and Sb. Appl. Phys. A 117, 709 (2015).CrossRefGoogle Scholar
Wei, Y.B., Wu, Z., Jia, Y.M., Wu, J., Shen, Y.C., and Luo, H.S.: Dual-enhancement of ferro-/piezoelectric and photoluminescent performance in Pr3+ doped (K0.5Na0.5)NbO3 lead-free ceramics. Appl. Phys. Lett. 105, 042902 (2014).Google Scholar
Chang, Y., Poterala, S.F., Yang, Z., Trolier-McKinstry, S., and Messing, G.L.: 〈001〉 textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Appl. Phys. Lett. 95, 232905 (2009).Google Scholar
Chang, Y., Poterala, S., Yang, Z., and Messing, G.L.: Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics. J. Am. Ceram. Soc. 94, 2494 (2011).Google Scholar
Takao, H., Saito, Y., Aoki, Y., and Horibuchi, K.: Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a pintering aid of CuO. J. Am. Ceram. Soc. 89, 1951 (2006).Google Scholar
Hussain, A., Kim, J.S., Song, T.K., Kim, M.H., Kim, W.J., and Kim, S.S.: Fabrication of textured KNNT ceramics by reactive template grain growth using NN templates. Curr. Appl. Phys. 13, 1055 (2013).Google Scholar
Saito, Y. and Takao, H.: Synthesis of polycrystalline platelike KNbO3 particles by the topochemical micro-crystal conversion method and fabrication of grain-oriented (K0.5Na0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 27, 4085 (2007).Google Scholar
Haugen, A.B., Henning, G., Madaro, F., Morozov, M.I., Tutuncu, G., Jones, J.L., Grande, T., and Einarsrud, M.: Piezoelectric K0.5Na0.5NbO3 ceramics textured using needlelike K0.5Na0.5NbO3 templates. J. Am. Ceram. Soc. 97, 3818 (2014).Google Scholar
Li, Y., Hui, C., Wu, M., Li, Y., and Wang, Y.: Textured (K0.5Na0.5)NbO3 ceramics prepared by screen-printing multilayer grain growth technique. Ceram. Int. 38S, S283 (2012).Google Scholar
Tutuncu, G., Chang, Y., Poterala, S., Jones, J.L., and Messing, G.L.: In situ observations of template grain growth in (Na0.5K0.5)0.98Li0.02NbO3 piezoceramics: Texture development and template-matrix interactions. J. Am. Ceram. Soc. 95, 2653 (2012).Google Scholar
Gao, F., Hong, R.Z., Li, J.J., Yao, Y.H., and Tian, C.S.: Effect of different templates on microstructure of textured Na0.5Bi0.5TiO3–BaTiO3 ceramics with RTGG method. J. Eur. Ceram. Soc. 28, 2063 (2008).Google Scholar
Bai, W., Hao, J., Fu, F., Li, W., Shen, B., and Zhai, J.: Structure and strain behavior of 〈001〉 textured BNT-based ceramics by template grain growth. Mater. Lett. 97, 137 (2013).CrossRefGoogle Scholar
Deng, M., Li, X., Zhao, Z., Li, T., Dai, Y., and Ji, H.: Crystallographic textured evolution in 0.85Na0.5Bi0.5TiO3–0.04BaTiO3–0.11K0.5Bi0.5TiO3 ceramics prepared by reactive-templated grain growth method. J. Mater. Sci. Mater. Electron. 25, 1873 (2014).Google Scholar
Gao, F., Liu, X., Zhang, C., Cheng, L., and Tian, C.: Fabrication and electrical properties of textured (Na,K)0.5Bi0.5TiO3 ceramics by reactive-templated grain growth. Ceram. Int. 34, 403 (2008).Google Scholar
Hu, D., Mori, K., Kong, X., Shinagawa, K., Wada, S., and Feng, Q.: Fabrication of [100]-oriented bismuth sodium titanate ceramics with small grain size and high density for piezoelectric materials. J. Eur. Ceram. Soc. 34, 1169 (2014).Google Scholar
Zou, H., Sui, Y., Zhu, X., Liu, B., Xue, J., and Zhang, J.: Texture development and enhanced electromechanical properties in 〈001〉-textured BNT-based materials. Mater. Lett. 184, 139 (2016).Google Scholar
Shoji, T., Yoshida, Y., and Kimura, T.: Mechanism of texture development in Bi0.5(Na,K)0.5TiO3 templated by platelike Al2O3 particles. J. Am. Ceram. Soc. 91, 3883 (2008).CrossRefGoogle Scholar
Shoji, T., Fuse, K., and Kimura, T.: Mechanism of texture development in Bi0.5(Na,K)0.5TiO3 prepared by the templated grain growth process. J. Am. Ceram. Soc. 92, S140 (2009).Google Scholar
Jing, X., Li, Y., Yang, Q., Zeng, J., and Yin, Q.: Influence of different templates on the textured Bi0.5(Na1−x K x )0.5TiO3 piezoelectric ceramics by the reactive templated grain growth process. Ceram. Int. 30, 1889 (2004).Google Scholar
Maurya, D., Zhou, Y., Yan, Y., and Priya, S.: Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response. J. Mater. Chem. C 1, 2102 (2013).Google Scholar
Maurya, D., Zhou, Y., Wang, Y., Yan, Y.K., Li, J.F., Viehland, D., and Priya, S.: Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3–BaTiO3–Na0.5Bi0.5TiO3 piezoelectric materials. Sci. Rep. 5, 8595 (2014).Google Scholar
Zhang, H., Xu, P., Patterson, E., Zang, J., Jiang, S., and Rödel, J.: Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics. J. Eur. Ceram. Soc. 35, 2501 (2015).Google Scholar
Ma, S., Zhang, Y., Liu, Z., Dai, X., and Huang, J.: Preparation and enhanced electric-field-induced strain of textured 91BNT–6BT–3KNN lead-free piezoceramics by TGG method. J. Mater. Sci. Mater. Electron. 27, 3076 (2016).Google Scholar
Vriami, D., Damjanovic, D., Vleugels, J., and Van Der Biest, O.: Textured BaTiO3 by templated grain growth and electrophoretic deposition. J. Mater. Sci. 50, 7896 (2015).Google Scholar
Fu, F., Shen, B., Xu, Z., and Zhai, J.: Electric properties of BaTiO3 lead-free textured piezoelectric thick film by screen printing method. J. Electroceram. 33, 208 (2014).Google Scholar
Wada, S., Takeda, K., Muraishi, T., Kakemoto, H., Tsurumi, T., and Kimura, T.: Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn. J. Appl. Phys. 46, 739 (2007).Google Scholar
Kamlo, A.N., Geffroy, P.M., Pham-Thi, M., and Marchet, P.: {111}-Textured BaTiO3 ceramics elaborated by templated grain growth using NaNbO3 templates. Mater. Lett. 113, 149 (2013).Google Scholar
Liu, W. and Ren, X.: Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).Google Scholar
Sato, T. and Kimura, T.: Preparation of 〈111〉 textured BaTiO3 ceramics by templated grain growth method using novel template particles. Ceram. Int. 34, 757 (2008).Google Scholar
Ye, S.K., Fuh, J.Y.H., and Lu, L.: Structure and electrical properties of 〈001〉 textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 100, 252906 (2012).Google Scholar
Sabolsky, E.M., Maldonado, L., Seabaugh, M.M., and Swartz, S.L.: Textured-Ba(Zr,Ti)O3 piezoelectric ceramics fabricated by templated grain growth (TGG). J. Electroceram. 25, 77 (2010).Google Scholar
Bai, W., Chen, D., Li, P., Shen, B., Zhai, J., and Ji, Z.: Enhanced electromechanical properties in 〈001〉-textured (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 lead-free piezoceramics. Ceram. Int. 42, 3429 (2016).Google Scholar
Zhukov, S., Genenko, Y.A., Koruza, J., Schultheiß, J., Seggern, H.v., Sakamoto, W., Ichikawa, H., Murata, T., Hayashi, K., and Yogo, T.: Effect of texturing on polarization switching dynamics in ferroelectric ceramics. Appl. Phys. Lett. 108, 012907 (2016).CrossRefGoogle Scholar
Schultheiß, J., Clemens, O., Zhukov, S., Seggern, H.v., Sakamoto, W., and Koruza, J.: Effect of degree of crystallographic texture on ferro- and piezoelectric properties of Ba0.85Ca0.15TiO3 piezoceramics. J. Am. Ceram. Soc. (2017). doi: 10.1111/jace.14749.CrossRefGoogle Scholar
Ye, S., Fuh, J., Lu, L., Chang, Y-I., and Yang, J-R.: Structure and properties of hot-pressed lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics. RSC Adv. 3, 20693 (2013).Google Scholar
Endo, S., Nagata, H., and Takenaka, T.: Fabrication and high power piezoelectric characteristics of textured (Sr0.7Ca0.3)2Bi4Ti5O18 . Jpn. J. Appl. Phys. 53, 3 (2014).Google Scholar
Zhang, H., Yan, H., Zhang, X., Reece, M.J., Liu, J., Shen, Z., Kan, Y., and Wang, P.: The effect of texture on the properties of Bi3.15Nd0.85Ti3O12 ceramics prepared by spark plasma sintering. Mater. Sci. Eng., A 475, 92 (2008).Google Scholar
Kimura, T., Sakuma, Y., and Murata, M.: Texture development in piezoelectric ceramics by templated grain growth using heterotemplates. J. Eur. Ceram. Soc. 25, 2227 (2005).Google Scholar
Kimura, M., Ogawa, H., Sawada, T., Shiratsuyu, K., Wada, N., and Ando, A.: Piezoelectric properties in textured ceramics of bismuth layer-structured ferroelectrics. J. Electroceram. 21, 55 (2008).Google Scholar
Chen, H., Shen, B., Xu, J., and Zhai, J.: Textured Ca0.85(Li,Ce)0.15Bi4Ti4O15 ceramics for high temperature piezoelectric applications. Mater. Res. Bull. 47, 2530 (2012).Google Scholar
Chen, H. and Zhai, J.: Enhanced piezoelectric properties of CaBi2Nb2O9 with Eu modification and templated grain growth. Key Eng. Mater. 515, 1367 (2012).Google Scholar
Hao, H., Liu, H., and Ouyang, S.: Processing and property of textured lead-free SrTi4Bi4O15 piezoelectric ceramics. J. Electroceram. 21, 255 (2008).Google Scholar
Li, T., Li, X., Zhao, Z., Ji, H., and Dai, Y.: Structures and electrical properties of textured Ca0.85(LiCe)0.075Bi4Ti4O15 ceramics prepared by the reactive templated grain growth. Integr. Ferroelectr. 162, 1 (2015).Google Scholar
Liu, J., Shen, Z., Nygren, M., Kan, Y., and Wang, P.: SPS processing of bismuth-layer structured ferroelectric ceramics yielding highly textured microstructures. J. Eur. Ceram. Soc. 26, 3233 (2006).Google Scholar
Bao, Q.X., Zhu, L.H., Huang, Q.W., and Xv, J.: Preparation of textured Ba2NaNb5O15 ceramics by templated grain growth. Ceram. Int. 32(7), 745 (2006).Google Scholar
Dursun, S., Mensur-Alkoy, E., and Alkoy, S.: Fabrication of textured lead-free strontium barium niobate (SBN61) bulk ceramics and their electrical properties. J. Eur. Ceram. Soc. 36, 2479 (2016).Google Scholar
Chang, Y., Lee, S., Poterala, S., Randall, C.A., and Messing, G.L.: A critical evaluation of reactive templated grain growth (RTGG) mechanisms in highly [001] textured Sr0.61Ba0.39Nb2O6 ferroelectric-thermoelectrics. J. Mater. Res. 26(24), 3044 (2011).Google Scholar
Wei, L., Chao, X., Han, X., and Yang, Z.: Structure and electrical properties of textured Sr1.85Ca0.15NaNb5O15 ceramics prepared by reactive templated grain growth. Mater. Res. Bull. 52, 65 (2014).Google Scholar
Liu, L. and Hou, Z.: Fabrication of grain-oriented KSr2Nb5O15 ceramics by a brush technique. Mater. Lett. 186, 105 (2017).Google Scholar
Alkoy, S. and Dursun, S.: Processing and properties of textured potassium strontium niobate (KSr2Nb5O15) ceramic fibers—Texture development. J. Am. Ceram. Soc. 95(3), 937 (2012).Google Scholar
Alkoy, S. and Dursun, S.: Processing and properties of textured potassium strontium niobate (KSr2Nb5O15) ceramic fibers-effect of texture on the electrical properties. IEEE Trans. Ultrason., Ferroelectr., Freq. Control 60, 2044 (2013).Google Scholar
Tanaka, S., Takahashi, T., and Furushima, R.: Fabrication of c-axis-oriented potassium strontium niobate (KSr2Nb5O15) ceramics by a rotating magnetic field and electrical property. J. Ceram. Soc. Japan 118, 722 (2010).Google Scholar
Apetz, R. and van Bruggen, M.P.B.: Transparent alumina: A light-scattering model. J. Am. Ceram. Soc. 86, 480 (2003).Google Scholar
Liu, P., Yi, H., Zhou, G., Zhang, J., and Wang, S.: HIP and pressureless sintering of transparent alumina shaped by magnetic field assisted slip casting. Opt. Mater. Exp. 5, 441 (2015).Google Scholar
Pringuet, A., Takahashi, T., Baba, S., Kamo, Y., Kato, Z., Uematsu, K., and Tanaka, S.: Fabrication of transparent grain-oriented polycrystalline alumina by colloidal processing. J. Am. Ceram. Soc. 99, 3217 (2016).Google Scholar
Tanaka, S., Takahashi, T., and Uematsu, K.: Fabrication of transparent crystal-oriented polycrystalline strontium barium niobate ceramics for electro-optical application. J. Eur. Ceram. Soc. 34, 3723 (2014).Google Scholar
Akiyama, J., Sato, Y., and Taira, T.: Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics. Appl. Phys. Exp. 4, 002703 (2011).Google Scholar
Y. Sato, J. Akiyama, and T. Taira: Micro-domain controlled anisotropic laser ceramics assisted by rare-earth trivalent, in Pacific Rim Laser Damage 2011: Optical Materials for High Power Lasers, edited by J. Shao, K. Sugioka, and C.J. Stolz (Proc. of SPIE 8206, Bellingham, WA, 2012) p. 82061T-1.Google Scholar
Sato, Y., Arzakantsyan, M., Akiyama, J., and Taira, T.: Anisotropic Yb:FAP laser ceramics by micro-domain control. Opt. Mater. Exp. 4, 214969 (2006).Google Scholar
Shoji, I., Sato, Y., Kurimura, S., Lupei, V., Taira, T., Ikesue, A., and Yoshida, K.: Thermal-birefringence-induced depolarization in Nd:YAG ceramics. Opt. Lett. 27, 234 (2002).Google Scholar
Shoji, I. and Taira, T.: Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal. Appl. Phys. Lett. 80, 3048 (2002).Google Scholar
Arakawa, S., Kadoura, H., Uyama, T., Takatori, K., Takeda, Y., and Tani, T.: Formation of preferentially oriented Y3Al5O12 film on a reactive sapphire substrate: Phase and texture transitions from Y2O3 . J. Eur. Ceram. Soc. 36, 663 (2016).Google Scholar
Watari, K.: High thermal conductivity non-oxide ceramics. J. Ceram. Soc. Jpn. 109, S7 (2001).Google Scholar
Hirosaki, N., Ogata, S., Kocer, C., Kitagawa, H., and Nakamura, Y.: Molecular dynamics calculation of the ideal thermal conductivity of single-crystal. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 134110 (2002).Google Scholar
Suzuki, T.S. and Sakka, Y.: Preparation of oriented bulk 5 wt% Y2O3–AlN ceramics by slip casting in a high magnetic field and sintering. Scr. Mater. 52, 583 (2005).CrossRefGoogle Scholar
Suzuki, T.S., Uchikoshi, T., and Sakka, Y.: Effect of sintering additive on crystallographic orientation in AlN prepared by slip casting in a strong magnetic field. J. Eur. Ceram. Soc. 29, 2627 (2009).Google Scholar
Li, B., Pottier, L., Roger, J.P., Fournier, D., Watari, K., and Hirao, K.: Measuring the anisotropic thermal diffusivity of silicon nitride grains by thermoreflectance microscopy. J. Eur. Ceram. Soc. 19, 1631 (1999).Google Scholar
Zhu, X., Suzuki, T.S., Uchikoshi, T., and Sakka, Y.: Texturing behavior in sintered reaction-bonded silicon nitride via strong magnetic field alignment. J. Eur. Ceram. Soc. 28, 929 (2008).Google Scholar
Zhu, X.W., Sakka, Y., Zhou, Y., Hirao, K., and Itatani, K.: A strategy for fabricating textured silicon nitride with enhanced thermal conductivity. J. Eur. Ceram. Soc. 34, 2585 (2014).Google Scholar
Hirao, K., Watari, K., Brito, M.E., Toriyama, M., and Kanzaki, S.: High thermal conductivity in silicon nitride with anisotropic microstructure. J. Am. Ceram. Soc. 79, 2485 (1996).Google Scholar
Akimune, Y., Munakata, F., Matsuo, K., Hirosaki, N., Okamoto, Y., and Misono, K.: Raman spectroscopy analysis of structural defects in hot isostatically pressed silicon nitride. J. Ceram. Soc. Jpn. 107, 339 (1999).Google Scholar
McColm: Ceramic Hardness, 1st ed. (Plenum Press, New York, 1990).Google Scholar
Carisey, T., Levin, I., and Brandon, D.G.: Microstructure and mechanical properties of textured Al2O3 . J. Eur. Ceram. Soc. 15, 283 (1995).Google Scholar
Lee, S., Lee, Y., Kim, Y., Xie, R., Mitomo, M., and Zhan, G.: Mechanical properties of hot-forged silicon carbide ceramics. Scr. Mater. 52, 153 (2005).Google Scholar
Vedula, V.R., Glass, S.J., Saylor, D.M., Rohrer, G.S., Carter, W.C., Langer, S.A., and Fuller, E.R. Jr.: Residual stress predictions in polycrystalline alumina. J. Am. Ceram. Soc. 84, 2947 (2001).Google Scholar
Salem, J.A., Shannon, J.L., and Bradt, R.C.: The effect of texture on the crack growth resistance of alumina. Presented at the 89th Annual Meeting of the American Ceramic Society (1987). Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880004824.pdf (accessed 20 December 2016).Google Scholar
Zhang, L., Vleugels, J., Darchuk, L., and Van der Biest, O.: Magnetic field oriented tetragonal zirconia with anisotropic toughness. J. Eur. Ceram. Soc. 31, 1405 (2011).Google Scholar
Pavlacka, R., Bermejo, R., Chang, Y., Green, D.J., and Messing, G.L.: Fracture behavior of layered alumina microstructural composites with highly textured layers. J. Am. Ceram. Soc. 96, 1577 (2013).Google Scholar
Chang, Y., Bermejo, R., and Messing, G.L.: Improved fracture behavior of alumina microstructural composites with highly textured compressive layers. J. Am. Ceram. Soc. 97, 3643 (2014).Google Scholar
He, M-Y. and Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25, 1053 (1989).Google Scholar
Nakamura, M., Hirao, K., Yamauchi, Y., and Kanzaki, S.: Tribological properties of unidirectionally aligned silicon nitride. J. Am. Ceram. Soc. 84, 2579 (2001).Google Scholar
Wu, W., Sakka, Y., and Suzuki, T.S.: Microstructure and anisotropic properties of textured ZrB2 and ZrB2–MoSi2 ceramics prepared by strong magnetic field alignment. Int. J. Appl. Ceram. Technol. 11, 218 (2014).Google Scholar
Zhu, X. and Sakka, Y.: Textured silicon nitride: Processing and anisotropic properties. Sci. Technol. Adv. Mater. 9, 1 (2008).Google Scholar
Pavlacka, R. and Messing, G.: Processing and mechanical response of highly textured Al2O3 . J. Eur. Ceram. Soc. 30, 2917 (2010).Google Scholar
Sun, Z.M.: Progress in research and development on MAX phases: A family of layered ternary compounds. Int. Mater. Rev. 56, 143 (2011).Google Scholar
Shamma, M., Caspi, E.N., Anasori, B., Clausen, B., Brown, D.W., Vogel, S.C., Presser, V., Amini, S., Yeheskel, O., and Barsoum, M.W.: In situ neutron diffraction evidence for fully reversible dislocation motion in highly textured polycrystalline Ti2AlC samples. Acta Mater. 98, 51 (2015).Google Scholar
Hu, C., Sakka, Y., Tanaka, H., Nishimura, T., and Grasso, S.: Fabrication of textured Nb4AlC3 ceramic by slip casting in a strong magnetic field and spark plasma sintering. J. Am. Ceram. Soc. 94, 410 (2011).Google Scholar
Hu, C., Sakka, Y., Nishimura, T., Guo, S., Grasso, S., and Tanaka, H.: Physical and mechanical properties of highly textured polycrystalline Nb4AlC3 ceramic. Sci. Technol. Adv. Mater. 12, 044603 (2011).Google Scholar
Hu, C., Sakka, Y., Grasso, S., Nishimura, T., Guo, S., and Tanaka, H.: Shell-like nanolayered Nb4AlC3 ceramic with high strength and toughness. Scr. Mater. 64, 765 (2011).Google Scholar
Hu, C., Sakka, Y., Grasso, S., Suzuki, T., and Tanaka, H.: Tailoring Ti3SiC2 ceramic via a strong magnetic field alignment method followed by spark plasma sintering. J. Am. Ceram. Soc. 94, 742 (2011).Google Scholar
Sato, K., Mishra, M., Hirano, H., Suzuki, T.S., and Sakka, Y.: Fabrication of textured Ti3SiC2 ceramic by slip casting in a strong magnetic field and pressureless sintering. J. Ceram. Soc. Jpn. 122, 817 (2014).Google Scholar
Zhang, H.B., Hu, C.F., Sato, K., Grasso, S., Estili, M., Guo, S.Q., Morita, K., Yoshida, H., Nishimura, T., Suzuki, T.S., Barsoum, M.W., Kim, B.N., and Sakka, Y.: Tailoring Ti3AlC2 ceramic with high anisotropic physical and mechanical properties. J. Eur. Ceram. Soc. 393, 35 (2015).Google Scholar
Mishra, M., Sakka, Y., Hu, C., Suzuki, T.S., Uchikoshi, T., and Besra, L.: Textured Ti3SiC2 by EPD in a strong magnetic field. Key Eng. Mater. 507, 15 (2012).Google Scholar
Mizuno, Y., Sato, K., Mrinalini, M., Suzuki, T.S., and Sakka, Y.: Fabrication of textured Ti3AlC2 by spark plasma sintering and their anisotropic mechanical properties. J. Ceram. Soc. Jpn. 121, 366 (2013).Google Scholar
Lapauw, T., Vanmeensel, K., Lambrinou, K., and Vleugels, J.: A new method to texture dense M n+1AX n ceramics by spark plasma deformation. Scr. Mater. 111, 98 (2016).Google Scholar
Aleshin, V.I., Raevskii, I.P., and Sitalo, E.I.: Electromechanical properties of a textured ceramic material in the (1 − x)PMN–xPT system: Simulation based on the effective-medium method. Phys. Solid State 50, 2150 (2008).Google Scholar
Pham-Thi, M., Hemery, H., and Dammak, H.: X-ray investigation of highly oriented (1 − x)PbMg1/3Nb2/3O3–(x)PbTiO3 ceramics. J. Eur. Ceram. Soc. 25, 2433 (2005).Google Scholar
Poterala, S.F., Meyer, R.J., and Messing, G.L.: Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN–PT ceramics. J. Mater. Res. 28, 2961 (2013).Google Scholar
Jones, J.L., Slamovich, E.B., and Bowman, K.J.: Critical evaluation of the Lotgering degree of orientation texture indicator. J. Mater. Res. 19, 3414 (2004).Google Scholar
Supplementary material: File

Messing supplementary material S1

Supplementary Table

Download Messing supplementary material S1(File)
File 26 KB
Supplementary material: File

Messing supplementary material S2

Messing supplementary material

Download Messing supplementary material S2(File)
File 25.8 KB