Infrared (IR) nanoscopy represents a collection of imaging and spectroscopy techniques capable of resolving IR absorption on the nanometer scale. Chemical specificity is leveraged from vibrational spectroscopy, while light–matter interactions are detected by observing perturbations in the optical near field with an atomic force microscopy probe. Therefore, imaging is wavelength independent and has a spatial resolution on the nanometer scale, well beyond the classical diffraction limit. In this perspective, we outline the recent biological applications of scattering type scanning near-field optical microscopy and nanoscale Fourier-transform IR spectroscopy. These techniques are uniquely suited to resolving subcellular ultrastructure from a variety of cell types, as well as studying biological processes such as metabolic activity on the single-cell level. Furthermore, this review describes recent technical advances in IR nanoscopy, and emerging machine learning supported approaches to sampling, signal enhancement, and data processing. This emphasizes that label-free IR nanoscopy holds significant potential for ongoing and future biological applications.