1 Introduction
 Let 
               
                  
                  $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$
               
             be a symmetric integral matrix with 
               
                  
                  $n\geqslant 4$
               
            . In other words, 
                  $$\begin{eqnarray}A=\left(\begin{array}{@{}ccc@{}}a_{1,1} & \cdots \, & a_{1,n}\\ \vdots & \cdots \, & \vdots \\ a_{n,1} & \cdots \, & a_{n,n}\end{array}\right)\end{eqnarray}$$
               
             with 
               
                  
                  $a_{i,j}=a_{j,i}\in \mathbb{Z}$
               
             for all 
               
                  
                  $1\leqslant i<j\leqslant n$
               
            . Let 
               
                  
                  $f(x_{1},\ldots ,x_{n})$
               
             be the quadratic form defined as 
 Let 
               
                  
                  $t$
               
             be an integer. We call 
               
                  
                  $f$
               
             regular if 
               
                  
                  $A$
               
             is invertible. For regular indefinite quadratic forms with 
               
                  
                  $n\geqslant 4$
               
            , the well-known Hasse principle asserts that 
               
                  
                  $f(x_{1},\ldots ,x_{n})=t$
               
             has integer solutions if and only if 
               
                  
                  $f(x_{1},\ldots ,x_{n})=t$
               
             has local solutions.
 In this paper, we consider the equation 
               
                  
                  $f(x_{1},\ldots ,x_{n})=t$
               
            , where 
               
                  
                  $x_{1},\ldots ,x_{n}$
               
             are prime variables. It is expected that 
               
                  
                  $f(x_{1},\ldots ,x_{n})=t$
               
             has solutions with 
               
                  
                  $x_{1},\ldots ,x_{n}$
               
             primes if there are suitable local solutions. The classical theorem of Hua [Reference Hua7] deals with diagonal quadratic forms in five prime variables. In particular, every sufficiently large integer, congruent to 5 modulo 24, can be represented as a sum of five squares of primes. Recently, Liu [Reference Liu9] handled a wide class of quadratic forms 
               
                  
                  $f$
               
             with 10 or more prime variables. The general quadratic form in prime variables (or in dense sets) was recently investigated by Cook and Magyar [Reference Cook and Magyar3], and by Keil [Reference Keil8]. In particular, Cook and Magyar [Reference Cook and Magyar3] handled all regular quadratic forms in 21 or more prime variables, while the work of Keil [Reference Keil8] can deal with all regular quadratic forms in 17 or more variables. It involves only five prime variables for diagonal quadratic equation due to the effective mean value theorem. This is similar to the problem concerning Diophantine equations for cubic forms. The works of Baker [Reference Baker1], Vaughan [Reference Vaughan10, Reference Vaughan11] and Wooley [Reference Wooley13, Reference Wooley14] can deal with the diagonal cubic equation in seven variables. However, more variables are involved for general cubic forms. One can refer to the works of Heath-Brown [Reference Heath-Brown4, Reference Heath-Brown5] and Hooley [Reference Hooley6] for general cubic forms.
The purpose of this paper is to investigate general regular quadratic forms in nine or more prime variables. We define
                  $$\begin{eqnarray}N_{f,t}(X)=\mathop{\sum }_{\substack{ 1\leqslant x_{1},\ldots ,x_{n}\leqslant X \\ f(x_{1},\ldots ,x_{n})=t}}\mathop{\prod }_{j=1}^{n}{\rm\Lambda}(x_{j}),\end{eqnarray}$$
               
             where 
               
                  
                  ${\rm\Lambda}(\cdot )$
               
             is the von Mangoldt function. Our main result is the following.
Theorem 1.1. Suppose that 
                     
                        
                        $f(x_{1},\ldots ,x_{n})$
                     
                   is a regular integral quadratic form with 
                     
                        
                        $n\geqslant 9$
                     
                  , and that 
                     
                        
                        $t\in \mathbb{Z}$
                     
                  . Let 
                     
                        
                        $\mathfrak{S}(f,t)$
                     
                   and 
                     
                        
                        $\mathfrak{I}_{f,t}(X)$
                     
                   be defined in (3.11) and (3.13), respectively. Suppose that 
                     
                        
                        $K$
                     
                   is an arbitrary large real number. Then we have 
 where the implied constant depends on 
                     
                        
                        $f$
                     
                   and 
                     
                        
                        $K$
                     
                  .
 Denote by 
               
                  
                  $\mathbb{P}$
               
             the set of all prime numbers. For a prime 
               
                  
                  $p\in \mathbb{P}$
               
            , we use 
               
                  
                  $\mathbb{Z}_{p}$
               
             to denote the ring of 
               
                  
                  $p$
               
            -adic integers. Then we use 
               
                  
                  $\mathbb{U}_{p}$
               
             to denote the set of 
               
                  
                  $p$
               
            -adic units in 
               
                  
                  $\mathbb{Z}_{p}$
               
            . The general local to global conjecture of Bourgain–Gamburd–Sarnak [Reference Bourgain, Gamburd and Sarnak2] asserts that 
               
                  
                  $f(x_{1},\ldots ,x_{n})=t$
               
             has prime solutions provided that there are local solutions in 
               
                  
                  $\mathbb{U}_{p}$
               
             for all 
               
                  
                  $p\in \mathbb{P}$
               
            . Liu [Reference Liu9, Theorem 1.1] verified this conjecture for a wide class of regular indefinite integral quadratic forms with ten or more variables. Theorem 1.1 has the following consequence improving upon Liu [Reference Liu9, Theorem 1.1].
Theorem 1.2. Let 
                     
                        
                        $f(x_{1},\ldots ,x_{n})$
                     
                   be a regular indefinite integral quadratic form with 
                     
                        
                        $n\geqslant 9$
                     
                  , and let 
                     
                        
                        $t\in \mathbb{Z}$
                     
                  . Then 
                     
                        
                        $f(x_{1},\ldots ,x_{n})=t$
                     
                   has prime solutions if we have the following two conditions:
- 
                        
                        
(i) there are real solutions in
                                 $\mathbb{R}^{+}$
                              
                           , and - 
                        
                        
(ii) there are local solutions in
                                 $\mathbb{U}_{p}$
                              
                            for all prime 
                              
                                 
                                 $p$
                              
                           . 
 We define 
               
                  
                  $N_{f,t}^{\ast }(X)$
               
             to be the number of prime solutions to 
               
                  
                  $f(p_{1},\ldots ,p_{n})=t$
               
             with 
               
                  
                  $1\leqslant p_{1},\ldots ,p_{n}\leqslant X$
               
            . Suppose that 
               
                  
                  $f$
               
             is regular with 
               
                  
                  $n\geqslant 9$
               
            . Actually, in view of Theorem 1.1, one has 
               
                  
                  $N_{f,t}^{\ast }(X)\gg _{f,t}X^{n-2}\log ^{-n}X$
               
             for sufficiently large 
               
                  
                  $X$
               
             if the conditions (i) and (ii) in Theorem 1.2 hold.
 Theorem 1.2 covers all regular indefinite integral quadratic forms in nine prime variables. The 
               
                  
                  $O$
               
            -constant in the asymptotic formula (1.3) is independent of 
               
                  
                  $t$
               
            . Therefore, Theorem 1.1 can be applied to definite quadratic forms. In particular, if 
               
                  
                  $f(x_{1},\ldots ,x_{n})$
               
             is a positive definite integral quadratic form with 
               
                  
                  $n\geqslant 9$
               
            , then there exist 
               
                  
                  $r,q\in \mathbb{N}$
               
             so that all sufficiently large natural numbers 
               
                  
                  $N$
               
            , congruent to 
               
                  
                  $r$
               
             modulo 
               
                  
                  $q$
               
            , can be represented as 
               
                  
                  $N=f(p_{1},\ldots ,p_{n})$
               
            , where 
               
                  
                  $p_{1},\ldots ,p_{n}$
               
             are prime numbers.
The method in this paper can also be applied to refine Keil [Reference Keil8, Theorem 1.1]. In particular, one may obtain a variant of Keil [Reference Keil8, Theorem 1.1] for a wide class of quadratic forms in nine variables.
2 Notations
 As usual, we write 
               
                  
                  $e(z)$
               
             for 
               
                  
                  $e^{2{\it\pi}iz}$
               
            . Throughout we assume that 
               
                  
                  $X$
               
             is sufficiently large. Let 
               
                  
                  $L=\log X$
               
            . We use 
               
                  
                  $\ll$
               
             and 
               
                  
                  $\gg$
               
             to denote Vinogradov’s well-known notations, while the implied constants may depend on the form 
               
                  
                  $f$
               
            . Denote by 
               
                  
                  ${\it\phi}(q)$
               
             Euler’s totient function.
 For a set 
               
                  
                  ${\mathcal{S}}$
               
             in a field 
               
                  
                  $\mathbb{F}$
               
            , we define 
 We use 
               
                  
                  $M_{m,n}({\mathcal{S}})$
               
             to denote the set of 
               
                  
                  $m$
               
             by 
               
                  
                  $n$
               
             matrixes 
 and 
               
                  
                  $GL_{n}({\mathcal{S}})$
               
             to denote the set of invertible matrixes of order 
               
                  
                  $n$
               
            
            
 respectively. We define the off-diagonal rank of 
               
                  
                  $A$
               
             as 
where
 In other words, 
               
                  
                  $\text{rank}_{\text{off}}(A)$
               
             is the maximal rank of a submatrix in 
               
                  
                  $A$
               
            , which does not contain any diagonal entries. For 
               
                  
                  $\mathbf{x}=(x_{1},\ldots ,x_{n})^{T}\in \mathbb{N}^{n}$
               
            , we write 
 For 
               
                  
                  $\mathbf{x}=(x_{1},\ldots ,x_{n})^{T}\in \mathbb{Z}^{n}$
               
            , we also use the notation 
               
                  
                  ${\mathcal{A}}(\mathbf{x})$
               
             to indicate that the argument 
               
                  
                  ${\mathcal{A}}(x_{j})$
               
             holds for all 
               
                  
                  $1\leqslant j\leqslant s$
               
            . The meaning will be clear from the text. For example, we use 
               
                  
                  $1\leqslant \mathbf{x}\leqslant X$
               
             and 
               
                  
                  $|\mathbf{x}|\leqslant X$
               
             to denote 
               
                  
                  $1\leqslant x_{j}\leqslant X$
               
             for 
               
                  
                  $1\leqslant j\leqslant n$
               
             and 
               
                  
                  $|x_{j}|\leqslant X$
               
             for 
               
                  
                  $1\leqslant j\leqslant n$
               
            , respectively.
In order to apply the circle method, we introduce the exponential sum
 where 
               
                  
                  $A$
               
             is defined in (1.1). We define 
                  $$\begin{eqnarray}{\mathcal{M}}(Q)=\mathop{\bigcup }_{1\leqslant q\leqslant Q}\mathop{\bigcup }_{\substack{ a=1 \\ (a,q)=1}}^{q}{\mathcal{M}}(q,a;Q),\end{eqnarray}$$
               
            where
 The intervals 
               
                  
                  ${\mathcal{M}}(q,a;Q)$
               
             are pairwise disjoint for 
               
                  
                  $1\leqslant a\leqslant q\leqslant Q$
               
             and 
               
                  
                  $(a,q)=1$
               
             provided that 
               
                  
                  $Q\leqslant X/2$
               
            . For 
               
                  
                  $Q\leqslant X/2$
               
            , we set 
Now we introduce the major arcs defined as
 where 
               
                  
                  $K$
               
             is a sufficiently large constant throughout this paper. Then we define the minor arcs as 
3 The contribution from the major arcs
 For 
               
                  
                  $q\in \mathbb{N}$
               
             and 
               
                  
                  $(a,q)=1$
               
            , we define 
                  $$\begin{eqnarray}C(q,a)=\mathop{\sum }_{\substack{ 1\leqslant \mathbf{h}\leqslant q \\ (\mathbf{h},q)=1}}e\bigg(\mathbf{h}^{T}A\mathbf{h}\frac{a}{q}\bigg),\end{eqnarray}$$
               
             where 
               
                  
                  $A$
               
             is given by (1.1). Throughout, we assume that 
               
                  
                  $f$
               
             is connected to 
               
                  
                  $A$
               
             given by (1.1) and (1.2). Let 
                  $$\begin{eqnarray}B_{f,t}(q)=\frac{1}{{\it\phi}^{n}(q)}\mathop{\sum }_{\substack{ a=1 \\ (a,q)=1}}^{q}C(q,a)e\bigg(-\frac{at}{q}\bigg).\end{eqnarray}$$
               
             Concerning 
               
                  
                  $B_{f,t}(q)$
               
            , we have the following multiplicative property.
Lemma 3.1. The arithmetic function 
                     
                        
                        $B_{f,t}(q)$
                     
                   is multiplicative.
Proof. The desired conclusion can be proved by changing variables. ◻
Lemma 3.2. Suppose that 
                     
                        
                        $A$
                     
                   is invertible. For any prime 
                     
                        
                        $p$
                     
                  , there exists 
                     
                        
                        ${\it\gamma}_{p}={\it\gamma}_{p}(f,t)$
                     
                   such that 
                     
                        
                        $B_{f,t}(p^{k})=0$
                     
                   for all 
                     
                        
                        $k>{\it\gamma}_{p}$
                     
                  . Moreover, if 
                     
                        
                        $p\nmid 2\det (A)$
                     
                  , then we have 
                     
                        
                        ${\it\gamma}_{p}=1$
                     
                  .
Proof. Throughout this proof, we assume that 
                     
                        
                        $(a,p)=1$
                     
                  . We first deal with the case 
                     
                        
                        $p\geqslant 3$
                     
                  . We claim that if 
                        $$\begin{eqnarray}C(p^{k},a)=p^{nj}\mathop{\sum }_{\substack{ 1\leqslant \mathbf{h}\leqslant p^{k-j} \\ (\mathbf{h},p)=1 \\ A\mathbf{h}\equiv \mathbf{0}(\text{mod}~p^{j})}}e\bigg(\mathbf{h}^{T}A\mathbf{h}\frac{a}{p^{k}}\bigg)\end{eqnarray}$$
                     
                   for some 
                     
                        
                        $j\leqslant (k-2)/2$
                     
                  , then 
                        $$\begin{eqnarray}C(p^{k},a)=p^{n(j+1)}\mathop{\sum }_{\substack{ 1\leqslant \mathbf{h}\leqslant p^{k-j-1} \\ (\mathbf{h},p)=1 \\ A\mathbf{h}\equiv \mathbf{0}(\text{mod}~p^{j+1})}}e\bigg(\mathbf{h}^{T}A\mathbf{h}\frac{a}{p^{k}}\bigg).\end{eqnarray}$$
                     
                  Indeed, by changing variables, we obtain from (3.3) that
                        $$\begin{eqnarray}\displaystyle C(p^{k},a) & = & \displaystyle p^{nj}\mathop{\sum }_{1\leqslant \mathbf{u}\leqslant p}\mathop{\sum }_{\substack{ 1\leqslant \mathbf{h}\leqslant p^{k-j-1} \\ (\mathbf{h},p)=1 \\ A(\mathbf{u}p^{k-j-1}+\mathbf{h})\equiv \mathbf{0}(\text{mod}~p^{j})}}\nonumber\\ \displaystyle & & \displaystyle \times \,e\bigg((\mathbf{u}p^{k-j-1}+\mathbf{h})^{T}A(\mathbf{u}p^{k-j-1}+\mathbf{h})\frac{a}{p^{k}}\bigg).\nonumber\end{eqnarray}$$
                     
                   It follows from 
                     
                        
                        $j\leqslant (k-2)/2$
                     
                   that 
                     
                        
                        $j\leqslant k-j-1$
                     
                   and 
                     
                        
                        $k\leqslant 2(k-j-1)$
                     
                  . Thus we deduce that 
                        $$\begin{eqnarray}\displaystyle C(p^{k},a) & = & \displaystyle p^{nj}\mathop{\sum }_{1\leqslant \mathbf{u}\leqslant p}\mathop{\sum }_{\substack{ 1\leqslant \mathbf{h}\leqslant p^{k-j-1} \\ (\mathbf{h},p)=1 \\ A\mathbf{h}\equiv \mathbf{0}(\text{mod}~p^{j})}}e\bigg(2p^{k-j-1}\mathbf{u}^{T}A\mathbf{h}\frac{a}{p^{k}}\bigg)e\bigg(\mathbf{h}^{T}A\mathbf{h}\frac{a}{p^{k}}\bigg)\nonumber\\ \displaystyle & = & \displaystyle p^{n(j+1)}\mathop{\sum }_{\substack{ 1\leqslant \mathbf{h}\leqslant p^{k-j-1} \\ (\mathbf{h},p)=1 \\ A\mathbf{h}\equiv \mathbf{0}(\text{mod}~p^{j+1})}}e\bigg(\mathbf{h}^{T}A\mathbf{h}\frac{a}{p^{k}}\bigg).\nonumber\end{eqnarray}$$
                     
                  This establishes the desired claim, and therefore we arrive at
                        $$\begin{eqnarray}C(p^{k},a)=p^{ns}\mathop{\sum }_{\substack{ 1\leqslant \mathbf{h}\leqslant p^{k-s} \\ (\mathbf{h},p)=1 \\ A\mathbf{h}\equiv \mathbf{0}(\text{mod}~p^{s})}}e\bigg(\mathbf{h}^{T}A\mathbf{h}\frac{a}{p^{k}}\bigg),\end{eqnarray}$$
                     
                   where 
                     
                        
                        $s=\lfloor k/2\rfloor$
                     
                  . There exists 
                     
                        
                        $P\in GL_{n}(\mathbb{Z}_{p})$
                     
                   with 
                     
                        
                        $\det (P)=1$
                     
                   such that 
                     
                        
                        $P^{T}AP=D=\text{diag}\{d_{1},\ldots ,d_{n}\}$
                     
                   with 
                     
                        
                        $d_{1},\ldots ,d_{n}\in \mathbb{Z}_{p}$
                     
                  . Note that 
                     
                        
                        $A$
                     
                   is invertible, one has 
                     
                        
                        $d_{1}\cdots d_{n}\not =0$
                     
                  . In particular, we can choose 
                     
                        
                        $r\in \mathbb{N}$
                     
                   such that 
                     
                        
                        $p^{r}\nmid d_{j}$
                     
                   for all 
                     
                        
                        $1\leqslant j\leqslant n$
                     
                  . The condition 
                     
                        
                        $A\mathbf{h}\equiv \mathbf{0}(\text{mod}~p^{s})$
                     
                   implies 
                     
                        
                        $DP\mathbf{h}\equiv \mathbf{0}(\text{mod}~p^{s})$
                     
                  . If 
                     
                        
                        $s\geqslant r$
                     
                  , then 
                     
                        
                        $P\mathbf{h}\equiv \mathbf{0}(\text{mod}~p)$
                     
                  . So we obtain 
                     
                        
                        $\mathbf{h}\equiv \mathbf{0}(\text{mod}~p)$
                     
                  , which is a contradiction to the condition 
                     
                        
                        $(\mathbf{h},p)=1$
                     
                  . Therefore, we conclude that 
 Moreover, when 
                     
                        
                        $p\nmid 2\det (A)$
                     
                  , we can take 
                     
                        
                        $r=1$
                     
                   in (3.6).
 For 
                     
                        
                        $p=2$
                     
                  , the above argument is still valid with minor modifications. We now claim that if 
                        $$\begin{eqnarray}C(2^{k},a)=2^{2nj}\mathop{\sum }_{\substack{ 1\leqslant \mathbf{h}\leqslant 2^{k-2j} \\ (\mathbf{h},2)=1 \\ A\mathbf{h}\equiv \mathbf{0}(\text{mod}~2^{j})}}e\bigg(\mathbf{h}^{T}A\mathbf{h}\frac{a}{2^{k}}\bigg)\end{eqnarray}$$
                     
                   for some 
                     
                        
                        $j\leqslant (k-4)/4$
                     
                  , then 
                        $$\begin{eqnarray}C(2^{k},a)=2^{2n(j+1)}\mathop{\sum }_{\substack{ 1\leqslant \mathbf{h}\leqslant 2^{k-2j-2} \\ (\mathbf{h},2)=1 \\ A\mathbf{h}\equiv \mathbf{0}(\text{mod}~2^{j+1})}}e\bigg(\mathbf{h}^{T}A\mathbf{h}\frac{a}{2^{k}}\bigg).\end{eqnarray}$$
                     
                   This claim can be established by changing variables 
                     
                        
                        $\mathbf{h}=\mathbf{u}2^{k-2j-2}+\mathbf{v}$
                     
                   with 
                     
                        
                        $\mathbf{u}(\text{mod}~2^{2})$
                     
                   and 
                     
                        
                        $\mathbf{v}(\text{mod}~2^{k-2j-2})$
                     
                  . The argument leading to (3.6) implies that there exists 
                     
                        
                        $k_{0}$
                     
                   such that 
The desired conclusion follows from (3.2), (3.6) and (3.9).◻
Lemma 3.3. Let 
                     
                        
                        $B_{f,t}(q)$
                     
                   be defined as (3.2). If 
                     
                        
                        $A$
                     
                   is invertible and 
                     
                        
                        $n\geqslant 5$
                     
                  , then 
Proof. In view of Lemma 3.2, it suffices to prove
 for 
                     
                        
                        $p\nmid 2\det (A)$
                     
                   and 
                     
                        
                        $(a,p)=1$
                     
                  . Note that 
                        $$\begin{eqnarray}\displaystyle C(p,a) & = & \displaystyle \mathop{\sum }_{\substack{ \mathbf{h}\in \mathbb{N}^{n} \\ 1\leqslant \mathbf{h}\leqslant p}}e\bigg(\mathbf{h}^{T}A\mathbf{h}\frac{a}{p}\bigg)-\mathop{\sum }_{j=1}^{n}\mathop{\sum }_{\substack{ \mathbf{h}\in \mathbb{N}^{n-1} \\ 1\leqslant \mathbf{h}\leqslant p}}e\bigg(\mathbf{h}^{T}A_{j}\mathbf{h}\frac{a}{p}\bigg)\nonumber\\ \displaystyle & & \displaystyle +\,\mathop{\sum }_{1\leqslant i<j\leqslant n}\mathop{\sum }_{\substack{ \mathbf{h}\in \mathbb{N}^{n-2} \\ 1\leqslant \mathbf{h}\leqslant p}}e\bigg(\mathbf{h}^{T}A_{ij}\mathbf{h}\frac{a}{p}\bigg)+O(p^{n-3}),\nonumber\end{eqnarray}$$
                     
                   where 
                     
                        
                        $A_{j}$
                     
                   denotes the submatrix of 
                     
                        
                        $A$
                     
                   by deleting the 
                     
                        
                        $j$
                     
                  th row and 
                     
                        
                        $j$
                     
                  th column, and 
                     
                        
                        $A_{ij}$
                     
                   denotes the submatrix of 
                     
                        
                        $A_{j}$
                     
                   by deleting the 
                     
                        
                        $i$
                     
                  th row and 
                     
                        
                        $i$
                     
                  th column. For complete Gauss sums, we have 
                        $$\begin{eqnarray}\mathop{\sum }_{\substack{ \mathbf{h}\in \mathbb{N}^{k} \\ 1\leqslant \mathbf{h}\leqslant p}}e\bigg(\mathbf{h}^{T}M\mathbf{h}\frac{a}{p}\bigg)\ll p^{k-\text{rank}(M)/2},\end{eqnarray}$$
                     
                   where the implied constant depends on the square matrix 
                     
                        
                        $M$
                     
                  . The estimate (3.10) follows by observing that 
                     
                        
                        $\text{rank}(A_{j})\geqslant 3$
                     
                   and 
                     
                        
                        $\text{rank}(A_{ij})\geqslant 1$
                     
                  . We complete the proof.◻
 Now we introduce the singular series 
               
                  
                  $\mathfrak{S}(f,t)$
               
             defined as 
 where 
               
                  
                  $B_{f,t}(q)$
               
             is given by (3.2). From Lemmas 3.2 and 3.3, we conclude the following result.
Lemma 3.4. Suppose that 
                     
                        
                        $A$
                     
                   is invertible and 
                     
                        
                        $n\geqslant 5$
                     
                  . Then the singular series 
                     
                        
                        $\mathfrak{S}(f,t)$
                     
                   is absolutely convergent, and 
 where the local densities 
                     
                        
                        ${\it\chi}_{p}(f,t)$
                     
                   are defined as 
 Moreover, if 
                     
                        
                        $f(x_{1},\ldots ,x_{n})=t$
                     
                   has local solutions in 
                     
                        
                        $\mathbb{U}_{p}$
                     
                   for all prime 
                     
                        
                        $p$
                     
                  , then one has 
Proof. It suffices to explain 
                     
                        
                        $\mathfrak{S}(f,t)\gg 1$
                     
                   provided that 
                     
                        
                        $f(x_{1},\ldots ,x_{n})=t$
                     
                   has local solutions in 
                     
                        
                        $\mathbb{U}_{p}$
                     
                   for all prime 
                     
                        
                        $p$
                     
                  . Indeed, in view of Lemma 3.3, one has 
                     
                        
                        $\prod _{p\geqslant p_{0}}{\it\chi}_{p}(f,t)\gg 1$
                     
                   for some 
                     
                        
                        $p_{0}$
                     
                  . When 
                     
                        
                        $p<p_{0}$
                     
                  , by Lemma 3.2, for some 
                     
                        
                        ${\it\gamma}={\it\gamma}_{p}$
                     
                   we have 
                        $$\begin{eqnarray}{\it\chi}_{p}(f,t)=1+\mathop{\sum }_{m=1}^{{\it\gamma}}B_{f,t}(p^{m})=\mathop{\sum }_{\substack{ 1\leqslant \mathbf{h}\leqslant p^{{\it\gamma}} \\ (\mathbf{h},p)=1 \\ F(\mathbf{h})\equiv t(\text{mod}~p^{{\it\gamma}})}}1.\end{eqnarray}$$
                     
                   Since 
                     
                        
                        $f(x_{1},\ldots ,x_{n})=t$
                     
                   has local solutions in 
                     
                        
                        $\mathbb{U}_{p}$
                     
                  , one has 
                     
                        
                        ${\it\chi}_{p}(f,t)>0$
                     
                  . This concludes that 
                     
                        
                        $\mathop{\prod }_{p}{\it\chi}_{p}(f,t)\gg 1$
                     
                  .◻
Remark 3.5. We point out that in view of the proof of Lemmas 3.2–3.3, one has
 where 
                     
                        
                        $q_{1}$
                     
                   is square-free and 
                     
                        
                        $(2,q_{1}q_{2})=(q_{1},q_{2})=1$
                     
                  . In particular, the singular series is absolutely convergent if 
                     
                        
                        $\text{rank}(A)\geqslant 5$
                     
                  . Therefore, the condition that 
                     
                        
                        $f$
                     
                   is regular with 
                     
                        
                        $n\geqslant 9$
                     
                   in our Theorem 1.1 can be replaced by 
                     
                        
                        $\text{rank}(A)\geqslant 9$
                     
                  .
We define
 Since 
               
                  
                  $I({\it\beta})\ll X^{n}(1+X^{2}|{\it\beta}|)^{-2}$
               
             for 
               
                  
                  $\text{rank}(A)\geqslant 5$
               
            , we introduce the singular integral 
 where 
               
                  
                  $f(\mathbf{x})=\mathbf{x}^{T}A\mathbf{x}$
               
            . Note that 
               
                  
                  $\mathfrak{I}_{f,t}(X)\gg _{f,t}X^{n-2}$
               
             if 
               
                  
                  $f(x_{1},\ldots ,x_{n})$
               
             is indefinite and 
               
                  
                  $f(x_{1},\ldots ,x_{n})=t$
               
             has positive real solutions.
Lemma 3.6. Let 
                     
                        
                        $t\in \mathbb{Z}$
                     
                  , and let 
 where 
                     
                        
                        $A\in M_{n,n}(\mathbb{Z})$
                     
                   is a symmetric matrix with 
                     
                        
                        $\text{rank}(A)\geqslant 5$
                     
                  . Then one has 
Proof. We write 
                     
                        
                        $f(\mathbf{x})$
                     
                   for 
                     
                        
                        $\mathbf{x}^{T}A\mathbf{x}$
                     
                  . By the definition of 
                     
                        
                        $\mathfrak{M}$
                     
                  , one has 
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \int _{\mathfrak{M}}S({\it\alpha})e(-t{\it\alpha})\,d{\it\alpha}\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{q\leqslant P}\mathop{\sum }_{\substack{ 1\leqslant a\leqslant q \\ (a,q)=1}}\int _{|{\it\beta}|\leqslant \frac{P}{qX^{2}}}\mathop{\sum }_{1\leqslant \mathbf{x}\leqslant X}{\rm\Lambda}(\mathbf{x})e\bigg(f(\mathbf{x})\bigg(\frac{a}{q}+{\it\beta}\bigg)\bigg)e\bigg(-t\bigg(\frac{a}{q}+{\it\beta}\bigg)\bigg)d{\it\beta}.\nonumber\\ \displaystyle & & \displaystyle\end{eqnarray}$$
                     
                  We introduce the congruence condition to deduce that
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \mathop{\sum }_{1\leqslant \mathbf{x}\leqslant X}{\rm\Lambda}(\mathbf{x})e\bigg(f(\mathbf{x})\bigg(\frac{a}{q}+{\it\beta}\bigg)\bigg)\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{1\leqslant \mathbf{h}\leqslant q}e\bigg(f(\mathbf{h})\frac{a}{q}\bigg)\mathop{\sum }_{\substack{ 1\leqslant \mathbf{x}\leqslant X \\ \mathbf{x}\equiv \mathbf{h}(\text{mod}~q)}}{\rm\Lambda}(\mathbf{x})e(f(\mathbf{x}){\it\beta})\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{\substack{ 1\leqslant \mathbf{h}\leqslant q \\ (\mathbf{h},q)=1}}e\bigg(f(\mathbf{h})\frac{a}{q}\bigg)\mathop{\sum }_{\substack{ 1\leqslant \mathbf{x}\leqslant X \\ \mathbf{x}\equiv \mathbf{h}(\text{mod}~q)}}{\rm\Lambda}(\mathbf{x})e(f(\mathbf{x}){\it\beta})+O(X^{n-1}LP).\nonumber\end{eqnarray}$$
                     
                   Since 
                     
                        
                        $q\leqslant P=L^{K}$
                     
                  , the Siegel–Walfisz theorem together with summation by parts will imply for 
                     
                        
                        $(\mathbf{h},q)=1$
                     
                   that
                        $$\begin{eqnarray}\displaystyle \mathop{\sum }_{\substack{ 1\leqslant \mathbf{x}\leqslant X \\ \mathbf{x}\equiv \mathbf{h}(\text{mod}~q)}}{\rm\Lambda}(\mathbf{x})e(f(\mathbf{x}){\it\beta}) & = & \displaystyle \frac{1}{{\it\phi}^{n}(q)}\int _{[0,X]^{n}}e(f(\mathbf{x}){\it\beta})d\mathbf{x}+O(X^{n}L^{-100K})\nonumber\\ \displaystyle & = & \displaystyle \frac{1}{{\it\phi}^{n}(q)}I({\it\beta})+O(X^{n}L^{-100K}).\nonumber\end{eqnarray}$$
                     
                  It follows from above
By putting (3.16) into (3.15), we obtain
 It follows from 
                     
                        
                        $I({\it\beta})\ll X^{n}(1+X^{2}|{\it\beta}|)^{-2}$
                     
                   that 
and
Combining (3.17)–(3.19) together with Remark 3.5, we conclude
The proof of Lemma 3.6 is complete. ◻
4 Estimates for exponential sums
Lemma 4.1. Let 
                     
                        
                        $\{{\it\xi}_{z}\}$
                     
                   be a sequence satisfying 
                     
                        
                        $|{\it\xi}_{z}|\leqslant 1$
                     
                  . Then one has 
Proof. We expand the square to deduce that
                        $$\begin{eqnarray}\displaystyle \mathop{\sum }_{|y|\ll X}\bigg|\mathop{\sum }_{|z|\ll X}{\it\xi}_{z}e({\it\alpha}yz)\bigg|^{2} & = & \displaystyle \mathop{\sum }_{|z_{1}|\ll X}\mathop{\sum }_{|z_{2}|\ll X}{\it\xi}_{z_{1}}\overline{{\it\xi}_{z_{2}}}\mathop{\sum }_{|y|\ll X}e({\it\alpha}y(z_{1}-z_{2}))\nonumber\\ \displaystyle & {\leqslant} & \displaystyle \mathop{\sum }_{|z_{1}|\ll X}\mathop{\sum }_{|z_{2}|\ll X}\bigg|\mathop{\sum }_{|y|\ll X}e({\it\alpha}y(z_{1}-z_{2}))\bigg|.\nonumber\end{eqnarray}$$
                     
                  By changing variables, one can obtain
                        $$\begin{eqnarray}\displaystyle \mathop{\sum }_{|y|\ll X}\bigg|\mathop{\sum }_{|z|\ll X}{\it\xi}_{z}e({\it\alpha}yz)\bigg|^{2} & \ll & \displaystyle \mathop{\sum }_{|z|\ll X}\mathop{\sum }_{|x|\ll X}\bigg|\mathop{\sum }_{|y|\ll X}e({\it\alpha}yx)\bigg|\nonumber\\ \displaystyle & \ll & \displaystyle X\mathop{\sum }_{|x|\ll X}\bigg|\mathop{\sum }_{|y|\ll X}e({\it\alpha}yx)\bigg|\nonumber\\ \displaystyle & \ll & \displaystyle X\mathop{\sum }_{|x|\ll X}\min \{X,~\Vert x{\it\alpha}\Vert ^{-1}\}.\nonumber\end{eqnarray}$$
                     
                  We complete the proof.◻
Lemma 4.2. For 
                     
                        
                        ${\it\alpha}\in \mathfrak{m}(Q)$
                     
                  , one has 
Proof. For 
                     
                        
                        ${\it\alpha}\in \mathfrak{m}(Q)$
                     
                  , there exist 
                     
                        
                        $a$
                     
                   and 
                     
                        
                        $q$
                     
                   such that 
                     
                        
                        $1\leqslant a\leqslant q\leqslant 2Q$
                     
                  , 
                     
                        
                        $(a,q)=1$
                     
                   and 
                     
                        
                        $|{\it\alpha}-a/q|\leqslant 2Q(qX^{2})^{-1}$
                     
                  . By a variant of Vaughan [Reference Vaughan12, Lemma 2.2] (see also Exercise 2 in Chapter 2 [Reference Vaughan12]), one has 
 Since 
                     
                        
                        ${\it\alpha}\in \mathfrak{m}(Q)$
                     
                  , one has either 
                     
                        
                        $q>Q$
                     
                   or 
                     
                        
                        $|{\it\alpha}-a/q|>Q(qX^{2})^{-1}$
                     
                  . Then the desired estimate follows immediately.◻
Lemma 4.3. Let 
                     
                        
                        ${\it\alpha}\in \mathfrak{m}$
                     
                   and 
                     
                        
                        ${\it\beta}\in \mathbb{R}$
                     
                  . For 
                     
                        
                        $d\in \mathbb{Q}$
                     
                  , we define 
 If 
                     
                        
                        $d\not =0$
                     
                  , then one has 
 where the implied constant depends only on 
                     
                        
                        $d$
                     
                   and 
                     
                        
                        $K$
                     
                  .
Proof. The result is essentially classical. In particular, the method used to handle 
                     
                        
                        $\sum _{1\leqslant x\leqslant X}{\rm\Lambda}(x)e({\it\alpha}x^{2})$
                     
                   can be modified to establish the desired conclusion. We only explain that the implied constant is independent of 
                     
                        
                        ${\it\beta}$
                     
                  . By Vaughan’s identity, we essentially consider two types of exponential sums 
and
By Cauchy’s inequality, to handle the summation (4.3), it suffices to deal with
 One can apply the differencing argument to the summation of the type 
                     
                        
                        $\sum _{x}e({\it\alpha}^{\prime }x^{2}+x{\it\beta}^{\prime })$
                     
                   as follows 
                        $$\begin{eqnarray}\displaystyle \bigg|\mathop{\sum }_{x}e({\it\alpha}^{\prime }x^{2}+x{\it\beta}^{\prime })\bigg|^{2} & = & \displaystyle \mathop{\sum }_{x_{1}}\mathop{\sum }_{x_{2}}e({\it\alpha}^{\prime }(x_{1}^{2}-x_{2}^{2})+(x_{1}-x_{2}){\it\beta}^{\prime })\nonumber\\ \displaystyle & = & \displaystyle \mathop{\sum }_{h}\mathop{\sum }_{x}e(2{\it\alpha}^{\prime }hx+h{\it\beta}^{\prime })\leqslant \mathop{\sum }_{h}\bigg|\mathop{\sum }_{x}e(2{\it\alpha}^{\prime }hx)\bigg|.\nonumber\end{eqnarray}$$
                     
                   This leads to the fact that the estimate (4.1) is uniformly for 
                     
                        
                        ${\it\beta}$
                     
                  .◻
Lemma 4.4. Let 
                     
                        
                        ${\it\alpha}\in \mathfrak{m}(Q)$
                     
                  . Suppose that 
                     
                        
                        $A$
                     
                   is in the form 
                        $$\begin{eqnarray}A=\left(\begin{array}{@{}ccc@{}}A_{1} & B & 0\\ B^{T} & A_{2} & C\\ 0 & C^{T} & A_{3}\end{array}\right),\end{eqnarray}$$
                     
                   where 
                     
                        
                        $\text{rank}(B)\geqslant 3$
                     
                   and 
                     
                        
                        $\text{rank}(C)\geqslant 2$
                     
                  . Then we have 
Remark 4.5. In view of the proof, the estimate (4.5) still holds provided that 
                     
                        
                        $\text{rank}(B)+\text{rank}(C)\geqslant 5$
                     
                  .
Proof. By (4.4), we can write 
                     
                        
                        $S({\it\alpha})$
                     
                   in the form 
                        $$\begin{eqnarray}\displaystyle S({\it\alpha}) & = & \displaystyle \mathop{\sum }_{\substack{ 1\leqslant \mathbf{x}\leqslant X \\ 1\leqslant \mathbf{y}\leqslant X \\ 1\leqslant \mathbf{z}\leqslant X}}{\rm\Lambda}(\mathbf{x}){\rm\Lambda}(\mathbf{y}){\rm\Lambda}(\mathbf{z})\nonumber\\ \displaystyle & & \displaystyle \times \,e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+2\mathbf{x}^{T}B\mathbf{y}+\mathbf{y}^{T}A_{2}\mathbf{y}+2\mathbf{y}^{T}C\mathbf{z}+\mathbf{z}^{T}A_{3}\mathbf{z})),\nonumber\end{eqnarray}$$
                     
                    where 
                     
                        
                        $\mathbf{x}\in \mathbb{N}^{r}$
                     
                  , 
                     
                        
                        $\mathbf{y}\in \mathbb{N}^{s}$
                     
                   and 
                     
                        
                        $\mathbf{z}\in \mathbb{N}^{t}$
                     
                  . Then we have 
                        $$\begin{eqnarray}\displaystyle S({\it\alpha}) & {\leqslant} & \displaystyle L^{s}\mathop{\sum }_{1\leqslant \mathbf{y}\leqslant X}\bigg|\mathop{\sum }_{\substack{ 1\leqslant \mathbf{x}\leqslant X}}{\rm\Lambda}(\mathbf{x})e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+2\mathbf{x}^{T}B\mathbf{y}))\bigg|\nonumber\\ \displaystyle & & \displaystyle \times \,\bigg|\mathop{\sum }_{\substack{ 1\leqslant \mathbf{z}\leqslant X}}{\rm\Lambda}(\mathbf{z})e({\it\alpha}(2\mathbf{y}^{T}C\mathbf{z}+\mathbf{z}^{T}A_{3}\mathbf{z}))\bigg|.\nonumber\end{eqnarray}$$
                     
                  By Cauchy’s inequality, we obtain
                        $$\begin{eqnarray}\displaystyle S({\it\alpha}) & {\leqslant} & \displaystyle L^{s}\bigg(\mathop{\sum }_{1\leqslant \mathbf{y}\leqslant X}\bigg|\mathop{\sum }_{\substack{ 1\leqslant \mathbf{x}\leqslant X}}{\rm\Lambda}(\mathbf{x})e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+2\mathbf{x}^{T}B\mathbf{y}))\bigg|^{2}\bigg)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \times \,\bigg(\mathop{\sum }_{1\leqslant \mathbf{y}\leqslant X}\bigg|\mathop{\sum }_{\substack{ 1\leqslant \mathbf{z}\leqslant X}}{\rm\Lambda}(\mathbf{z})e({\it\alpha}(2\mathbf{y}^{T}C\mathbf{z}+\mathbf{z}^{T}A_{3}\mathbf{z}))\bigg|^{2}\bigg)^{1/2}.\end{eqnarray}$$
                     
                  We deduce by expanding the square that
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \mathop{\sum }_{1\leqslant \mathbf{y}\leqslant X}\bigg|\mathop{\sum }_{\substack{ 1\leqslant \mathbf{x}\leqslant X}}{\rm\Lambda}(\mathbf{x})e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+2\mathbf{x}^{T}B\mathbf{y}))\bigg|^{2}\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{\substack{ 1\leqslant \mathbf{x}_{1}\leqslant X}}\mathop{\sum }_{\substack{ 1\leqslant \mathbf{x}_{2}\leqslant X}}{\it\xi}(\mathbf{x}_{1},\mathbf{x}_{2})\mathop{\sum }_{1\leqslant \mathbf{y}\leqslant X}e(2{\it\alpha}(\mathbf{x}_{1}-\mathbf{x}_{2})^{T}B\mathbf{y})\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{\substack{ |\mathbf{h}|\leqslant X}}\mathop{\sum }_{\substack{ 1\leqslant \mathbf{x}\leqslant X \\ 1\leqslant \mathbf{x}+\mathbf{h}\leqslant X}}{\it\xi}(\mathbf{x}+\mathbf{h},\mathbf{x})\mathop{\sum }_{1\leqslant \mathbf{y}\leqslant X}e(2{\it\alpha}(\mathbf{h}^{T}B\mathbf{y}))\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \,X^{r}L^{2r}\mathop{\sum }_{\substack{ |\mathbf{h}|\leqslant X}}\bigg|\mathop{\sum }_{1\leqslant \mathbf{y}\leqslant X}e(2{\it\alpha}(\mathbf{h}^{T}B\mathbf{y}))\bigg|,\nonumber\end{eqnarray}$$
                     
                   where 
                     
                        
                        ${\it\xi}(\mathbf{x}_{1},\mathbf{x}_{2})$
                     
                   is defined as 
We write
                        $$\begin{eqnarray}B=\left(\begin{array}{@{}ccc@{}}b_{1,1} & \cdots \, & b_{1,s}\\ \vdots & \cdots \, & \vdots \\ b_{r,1} & \cdots \, & b_{r,s}\end{array}\right).\end{eqnarray}$$
                     
                   Since 
                     
                        
                        $\text{rank}(B)\geqslant 3$
                     
                  , without loss of generality, we assume that 
                     
                        
                        $\text{rank}(B_{0})=3$
                     
                  , where 
                     
                        
                        $B_{0}=(b_{i,j})_{1\leqslant i,j\leqslant 3}$
                     
                  . Let 
                     
                        
                        $B^{\prime }=(b_{i,j})_{4\leqslant i\leqslant r,1\leqslant j\leqslant 3}$
                     
                  . Then one has
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \mathop{\sum }_{\substack{ |\mathbf{h}|\leqslant X}}\bigg|\mathop{\sum }_{1\leqslant \mathbf{y}\leqslant X}e(2\mathbf{h}^{T}B\mathbf{y}{\it\alpha})\bigg|\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \,X^{s-3}\mathop{\sum }_{|h_{4}|,\ldots ,|h_{r}|\leqslant X}\mathop{\sum }_{\substack{ |\mathbf{u}|\leqslant X}}\bigg|\mathop{\sum }_{1\leqslant \mathbf{v}\leqslant X}e(2{\it\alpha}(\mathbf{u}^{T}B_{0}+\mathbf{k}^{T})\mathbf{v})\bigg|,\nonumber\end{eqnarray}$$
                     
                   where 
                     
                        
                        $\mathbf{u}^{T}=(h_{1},h_{2},h_{3})$
                     
                  , 
                     
                        
                        $\mathbf{v}^{T}=(y_{1},y_{2},y_{3})$
                     
                   and 
                     
                        
                        $\mathbf{k}^{T}=(h_{4},\ldots ,h_{r})B^{\prime }$
                     
                  . By changing variables 
                     
                        
                        $\mathbf{x}^{T}=2(\mathbf{u}^{T}B_{0}+\mathbf{k}^{T})$
                     
                  , we obtain 
                        $$\begin{eqnarray}\displaystyle \mathop{\sum }_{\substack{ |\mathbf{h}|\leqslant X}}\bigg|\mathop{\sum }_{1\leqslant \mathbf{y}\leqslant X}e(2\mathbf{h}^{T}B\mathbf{y}{\it\alpha})\bigg| & {\leqslant} & \displaystyle X^{s-3}\mathop{\sum }_{|h_{4}|,\ldots ,|h_{r}|\leqslant X}\mathop{\sum }_{\substack{ |\mathbf{x}|\ll X}}\bigg|\mathop{\sum }_{1\leqslant \mathbf{v}\leqslant X}e({\it\alpha}(\mathbf{x}^{T}\mathbf{v}))\bigg|\nonumber\\ \displaystyle & \ll & \displaystyle X^{r+s-6}\mathop{\sum }_{\substack{ |\mathbf{x}|\ll X}}\bigg|\mathop{\sum }_{1\leqslant \mathbf{v}\leqslant X}e({\it\alpha}(\mathbf{x}^{T}\mathbf{v}))\bigg|.\nonumber\end{eqnarray}$$
                     
                  We apply Lemma 4.2 to conclude that
and therefore,
Similar to (4.7), we can prove
Lemma 4.6. Suppose that 
                     
                        
                        $A$
                     
                   is in the form (4.4) with 
                     
                        
                        $\text{rank}(B)\geqslant 3$
                     
                   and 
                     
                        
                        $\text{rank}(C)\geqslant 2$
                     
                  . Then we have 
Proof. By Dirichlet’s approximation theorem, for any 
                     
                        
                        ${\it\alpha}\in [X^{-1},1+X^{-1}]$
                     
                  , there exist 
                     
                        
                        $a$
                     
                   and 
                     
                        
                        $q$
                     
                   with 
                     
                        
                        $1\leqslant a\leqslant q\leqslant X$
                     
                   and 
                     
                        
                        $(a,q)=1$
                     
                   such that 
                     
                        
                        $|{\it\alpha}-a/q|\leqslant (qX)^{-1}$
                     
                  . Thus the desired conclusion follows from Lemma 4.4 by the dyadic argument.◻
5 Quadratic forms with off-diagonal rank 
               
                  
                  ${\leqslant}3$
               
            
         
         
Proposition 5.1. Let 
                     
                        
                        $A$
                     
                   be given by (1.1), and let 
                     
                        
                        $S({\it\alpha})$
                     
                   be defined in (2.5). Suppose that 
                     
                        
                        $\text{rank}(A)\geqslant 9$
                     
                   and 
                     
                        
                        $\text{rank}_{\text{off}}(A)\leqslant 3$
                     
                  . Then we have 
 where the implied constant depends on 
                     
                        
                        $A$
                     
                   and 
                     
                        
                        $K$
                     
                  .
 From now on, we assume throughout Section 5 that 
               
                  
                  $\text{rank}(A)\geqslant 9$
               
             and 
where
                  $$\begin{eqnarray}B=\left(\begin{array}{@{}ccc@{}}a_{1,4} & a_{1,5} & a_{1,6}\\ a_{2,4} & a_{2,5} & a_{2,6}\\ a_{3,4} & a_{3,5} & a_{3,6}\end{array}\right).\end{eqnarray}$$
               
             Then we introduce 
               
                  
                  $B_{1},B_{2},B_{3}\in M_{3,n-4}(\mathbb{Z})$
               
             defined as 
                  $$\begin{eqnarray}\displaystyle B_{1} & = & \displaystyle \left(\begin{array}{@{}cccccc@{}}a_{1,5} & a_{1,6} & a_{1,7} & a_{1,8} & \cdots \, & a_{1,n}\\ a_{2,5} & a_{2,6} & a_{2,7} & a_{2,8} & \cdots \, & a_{2,n}\\ a_{3,5} & a_{3,6} & a_{3,7} & a_{3,8} & \cdots \, & a_{3,n}\end{array}\right),\end{eqnarray}$$
               
            
                  $$\begin{eqnarray}\displaystyle B_{2} & = & \displaystyle \left(\begin{array}{@{}cccccc@{}}a_{1,4} & a_{1,6} & a_{1,7} & a_{1,8} & \cdots \, & a_{1,n}\\ a_{2,4} & a_{2,6} & a_{2,7} & a_{2,8} & \cdots \, & a_{2,n}\\ a_{3,4} & a_{3,6} & a_{3,7} & a_{3,8} & \cdots \, & a_{3,n}\end{array}\right),\end{eqnarray}$$
               
            and
                  $$\begin{eqnarray}B_{3}=\left(\begin{array}{@{}cccccc@{}}a_{1,4} & a_{1,5} & a_{1,7} & a_{1,8} & \cdots \, & a_{1,n}\\ a_{2,4} & a_{2,5} & a_{2,7} & a_{2,8} & \cdots \, & a_{2,n}\\ a_{3,4} & a_{3,5} & a_{3,7} & a_{3,8} & \cdots \, & a_{3,n}\end{array}\right).\end{eqnarray}$$
               
            Subject to the assumption (5.1), we have the following.
Lemma 5.2. If 
                     
                        
                        $\text{rank}(B_{1})=\text{rank}(B_{2})=\text{rank}(B_{3})=2$
                     
                  , then one has 
Lemma 5.3. If 
                     
                        
                        $\text{rank}(B_{1})=\text{rank}(B_{2})=2$
                     
                   and 
                     
                        
                        $\text{rank}(B_{3})=3$
                     
                  , then one has 
Lemma 5.4. If 
                     
                        
                        $\text{rank}(B_{1})=2$
                     
                   and 
                     
                        
                        $\text{rank}(B_{2})=\text{rank}(B_{3})=3$
                     
                  , then one has 
Lemma 5.5. If 
                     
                        
                        $\text{rank}(B_{1})=\text{rank}(B_{2})=\text{rank}(B_{3})=3$
                     
                  , then one has 
Remark for the Proof of Proposition 5.1.
 If 
                     
                        
                        $\text{rank}_{\text{off}}(A)=0$
                     
                  , then 
                     
                        
                        $A$
                     
                   is a diagonal matrix and the conclusion is classical. When 
                     
                        
                        $\text{rank}_{\text{off}}(A)=3$
                     
                  , our conclusion follows from Lemmas 5.2–5.5 immediately. The method applied to establish Lemmas 5.2–5.5 can also be used to deal with the case 
                     
                        
                        $1\leqslant \text{rank}_{\text{off}}(A)\leqslant 2$
                     
                  . Indeed, the proof of Proposition 5.1 under the condition 
                     
                        
                        $1\leqslant \text{rank}_{\text{off}}(A)\leqslant 2$
                     
                   is easier, and we omit the details. Therefore, our main task is to establish Lemmas 5.2–5.5.
Lemma 5.6. Let 
                     
                        
                        $C\in M_{n,n}(\mathbb{Q})$
                     
                   be a symmetric matrix, and let 
                     
                        
                        $H\in M_{n,k}(\mathbb{Q})$
                     
                  . For 
                     
                        
                        ${\it\alpha}\in \mathbb{R}$
                     
                   and 
                     
                        
                        ${\bf\beta}\in \mathbb{R}^{k}$
                     
                  , we define 
 where 
                     
                        
                        ${\mathcal{X}}\subset \mathbb{Z}^{n}$
                     
                   is a finite subset of 
                     
                        
                        $\mathbb{Z}^{n}$
                     
                  . Let 
                        $$\begin{eqnarray}{\mathcal{N}}({\mathcal{F}})=\mathop{\sum }_{\substack{ \mathbf{x}\in \,{\mathcal{X}},\,\mathbf{y}\in \,{\mathcal{X}} \\ \mathbf{x}^{T}C\mathbf{x}=\mathbf{y}^{T}C\mathbf{y} \\ \mathbf{x}^{T}H=\mathbf{y}^{T}H}}w(\mathbf{x})w(\mathbf{y}).\end{eqnarray}$$
                     
                  Then we have
 where the implied constant may depend on 
                     
                        
                        $C$
                     
                   and 
                     
                        
                        $H$
                     
                  .
Proof. We can choose a natural number 
                     
                        
                        $h\in \mathbb{N}$
                     
                   such that 
                     
                        
                        $hC\in M_{n,n}(\mathbb{Z})$
                     
                   and 
                     
                        
                        $hH\in M_{n,k}(\mathbb{Z})$
                     
                  . Then we deduce that
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \int _{[0,1]^{k+1}}|{\mathcal{F}}({\it\alpha},\,{\bf\beta})|^{2}\,d{\it\alpha}\,d{\bf\beta}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \int _{[0,h]^{k+1}}\bigg|\mathop{\sum }_{\mathbf{x}\in \,{\mathcal{X}}}w(\mathbf{x})e(h^{-1}{\it\alpha}\mathbf{x}^{T}(hC)\mathbf{x}+\mathbf{x}^{T}(hH)(h^{-1}{\bf\beta}))\bigg|^{2}\,d{\it\alpha}\,d{\bf\beta}\nonumber\\ \displaystyle & & \displaystyle \quad =h^{k+1}\int _{[0,1]^{k+1}}\bigg|\mathop{\sum }_{\mathbf{x}\in \,{\mathcal{X}}}w(\mathbf{x})e({\it\alpha}\mathbf{x}^{T}(hC)\mathbf{x}+\mathbf{x}^{T}(hH){\bf\beta})\bigg|^{2}\,d{\it\alpha}\,d{\bf\beta}.\nonumber\end{eqnarray}$$
                     
                  By orthogonality, we have
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \int _{[0,1]^{k+1}}\bigg|\mathop{\sum }_{\mathbf{x}\in \,{\mathcal{X}}}w(\mathbf{x})e({\it\alpha}\mathbf{x}^{T}(hC)\mathbf{x}+\mathbf{x}^{T}(hH){\bf\beta})\bigg|^{2}\,d{\it\alpha}\,d{\bf\beta}\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{\substack{ \mathbf{x}\in \,{\mathcal{X}},~\mathbf{y}\in \,{\mathcal{X}} \\ \mathbf{x}^{T}(hC)\mathbf{x}=\mathbf{y}^{T}(hC)\mathbf{y} \\ \mathbf{x}^{T}(hH)=\mathbf{y}^{T}(hH)}}w(\mathbf{x})w(\mathbf{y})={\mathcal{N}}({\mathcal{F}}).\nonumber\end{eqnarray}$$
                     
                  Therefore, one obtains
and this completes the proof. ◻
Lemma 5.7. Let 
                     
                        
                        $C\in M_{n,n}(\mathbb{Q})$
                     
                   be a symmetric matrix, and let 
                     
                        
                        $H\in M_{n,k}(\mathbb{Q})$
                     
                  . We have 
where
                        $$\begin{eqnarray}{\mathcal{N}}_{1}=\mathop{\sum }_{\substack{ |\mathbf{x}|\ll X,\,|\mathbf{y}|\ll X \\ \mathbf{x}^{T}C\mathbf{x}=\mathbf{y}^{T}C\mathbf{y} \\ \mathbf{x}^{T}H=\mathbf{y}^{T}H}}1\quad \text{and}\quad {\mathcal{N}}_{2}=\mathop{\sum }_{\substack{ |\mathbf{x}|\ll X,\,|\mathbf{y}|\ll X \\ \mathbf{x}^{T}C\mathbf{y}=0 \\ \mathbf{x}^{T}H=0}}1.\end{eqnarray}$$
                     
                  
Proof. By changing variables 
                     
                        
                        $\mathbf{x}-\mathbf{y}=\mathbf{h}$
                     
                   and 
                     
                        
                        $\mathbf{x}+\mathbf{y}=\mathbf{z}$
                     
                  , the desired conclusion follows immediately.◻
The following result is well known.
Lemma 5.8. Let 
                     
                        
                        $C\in M_{k,m}(\mathbb{Q})$
                     
                  . If 
                     
                        
                        $\text{rank}(C)\geqslant 2$
                     
                  , then one has 
                        $$\begin{eqnarray}\mathop{\sum }_{\substack{ |\mathbf{x}|\ll X,|\mathbf{y}|\ll X \\ \mathbf{x}^{T}C\mathbf{y}=0}}1\ll X^{k+m-2}L,\end{eqnarray}$$
                     
                   where the implied constant depends on the matrix 
                     
                        
                        $C$
                     
                  .
5.1 Proof of Lemma 5.2
Lemma 5.9. If 
                        
                           
                           $\text{rank}(B_{1})=\text{rank}(B_{2})=\text{rank}(B_{3})=2$
                        
                     , then we can write 
                        
                           
                           $A$
                        
                      in the form 
                           $$\begin{eqnarray}A=\left(\begin{array}{@{}ccc@{}}A_{1} & B & 0\\ B^{T} & A_{2} & C\\ 0 & C^{T} & D\end{array}\right),\end{eqnarray}$$
                        
                      where 
                        
                           
                           $B\in GL_{3}(\mathbb{Z})$
                        
                     , 
                        
                           
                           $C\in M_{3,n-6}(\mathbb{Z})$
                        
                      and 
                        
                           
                           $D=\text{diag}\{d_{1},\ldots ,d_{n-6}\}$
                        
                      is a diagonal matrix.
Proof. We write for 
                        
                           
                           $1\leqslant j\leqslant n-3$
                        
                      that 
                           $$\begin{eqnarray}{\it\gamma}_{j}=\left(\begin{array}{@{}c@{}}a_{1,\,3+j}\\ a_{2,\,3+j}\\ a_{3,\,3+j}\end{array}\right).\end{eqnarray}$$
                        
                      Since 
                        
                           
                           $B=({\it\gamma}_{1},{\it\gamma}_{2},{\it\gamma}_{3})\in GL_{3}(\mathbb{Z})$
                        
                     , 
                        
                           
                           ${\it\gamma}_{1}$
                        
                     , 
                        
                           
                           ${\it\gamma}_{2}$
                        
                      and 
                        
                           
                           ${\it\gamma}_{3}$
                        
                      are linearly independent. For any 
                        
                           
                           $4\leqslant j\leqslant n-3$
                        
                     , one has 
                        
                           
                           $\text{rank}({\it\gamma}_{2},{\it\gamma}_{3},{\it\gamma}_{j})\leqslant \text{rank}(B_{1})=2$
                        
                     . Therefore, we obtain 
                        
                           
                           ${\it\gamma}_{j}\in <{\it\gamma}_{2},{\it\gamma}_{3}>$
                        
                     . Similarly, one has 
                        
                           
                           ${\it\gamma}_{j}\in <{\it\gamma}_{1},{\it\gamma}_{3}>$
                        
                      and 
                        
                           
                           ${\it\gamma}_{j}\in <{\it\gamma}_{1},{\it\gamma}_{2}>$
                        
                     . Then we can conclude that 
                        
                           
                           ${\it\gamma}_{j}=0$
                        
                      for 
                        
                           
                           $4\leqslant j\leqslant n-3$
                        
                     .
 For 
                        
                           
                           $7\leqslant i<j\leqslant n$
                        
                     , we write 
                           $$\begin{eqnarray}B_{i,j}=\left(\begin{array}{@{}cccc@{}}a_{1,4} & a_{1,5} & a_{1,6} & a_{1,j}\\ a_{2,4} & a_{2,5} & a_{2,6} & a_{2,j}\\ a_{3,4} & a_{3,5} & a_{3,6} & a_{3,j}\\ a_{i,4} & a_{i,5} & a_{i,6} & a_{i,j}\end{array}\right)=\left(\begin{array}{@{}c@{}}{\it\eta}_{1}^{T}\\ {\it\eta}_{2}^{T}\\ {\it\eta}_{3}^{T}\\ {\it\eta}_{4}^{T}\end{array}\right).\end{eqnarray}$$
                        
                      Since 
                        
                           
                           $3\leqslant \text{rank}(B_{i,j})\leqslant \text{rank}_{\text{off}}(A)=3$
                        
                     , we conclude that 
                        
                           
                           ${\it\eta}_{4}^{T}$
                        
                      can be linearly represented by 
                        
                           
                           ${\it\eta}_{1}^{T}$
                        
                     , 
                        
                           
                           ${\it\eta}_{2}^{T}$
                        
                      and 
                        
                           
                           ${\it\eta}_{3}^{T}$
                        
                     . Then we obtain 
                        
                           
                           $a_{i,j}=0$
                        
                      due to 
                        
                           
                           $a_{1,j}=a_{2,j}=a_{3,j}=0$
                        
                     . Therefore, the matrix 
                        
                           
                           $A$
                        
                      is in the form (5.6). We complete the proof.◻
Proof of Lemma 5.2.
By Lemma 5.9, we have
                           $$\begin{eqnarray}\displaystyle S({\it\alpha}) & = & \displaystyle \mathop{\sum }_{\substack{ \mathbf{x}\in \mathbb{N}^{3} \\ 1\leqslant \mathbf{x}\leqslant X}}\mathop{\sum }_{\substack{ \mathbf{y}\in \mathbb{N}^{3} \\ 1\leqslant \mathbf{y}\leqslant X}}\mathop{\sum }_{\substack{ \mathbf{z}\in \mathbb{N}^{n-6} \\ 1\leqslant \mathbf{z}\leqslant X}}\nonumber\\ \displaystyle & & \displaystyle \times \,e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+2\mathbf{x}^{T}B\mathbf{y}+\mathbf{y}^{T}A_{2}\mathbf{y}+2\mathbf{z}^{T}C^{T}\mathbf{y}+\mathbf{z}^{T}D\mathbf{z}))\nonumber\\ \displaystyle & & \displaystyle \times \,{\rm\Lambda}(\mathbf{x}){\rm\Lambda}(\mathbf{y}){\rm\Lambda}(\mathbf{z}).\nonumber\end{eqnarray}$$
                        
                     By orthogonality, we have
                           $$\begin{eqnarray}\displaystyle S({\it\alpha}) & = & \displaystyle \int _{[0,1]^{3}}\mathop{\sum }_{\substack{ \mathbf{w}\in \mathbb{Z}^{3} \\ |\mathbf{w}|\ll X}}\mathop{\sum }_{\substack{ \mathbf{x}\in \mathbb{N}^{3} \\ 1\leqslant \mathbf{x}\leqslant X}}\mathop{\sum }_{\substack{ \mathbf{y}\in \mathbb{N}^{3} \\ 1\leqslant \mathbf{y}\leqslant X}}\mathop{\sum }_{\substack{ \mathbf{z}\in \mathbb{N}^{n-6} \\ 1\leqslant \mathbf{z}\leqslant X}}e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+\mathbf{w}^{T}\mathbf{y}+\mathbf{z}^{T}D\mathbf{z}))\nonumber\\ \displaystyle & & \displaystyle \quad \times \,e((2\mathbf{x}^{T}B+\mathbf{y}^{T}A_{2}+2\mathbf{z}^{T}C^{T}-\mathbf{w}^{T}){\bf\beta}){\rm\Lambda}(\mathbf{x}){\rm\Lambda}(\mathbf{y}){\rm\Lambda}(\mathbf{z})\,d{\bf\beta},\nonumber\end{eqnarray}$$
                        
                      where 
                        
                           
                           ${\bf\beta}=({\it\beta}_{1},{\it\beta}_{2},{\it\beta}_{3})^{T}$
                        
                      and we use 
                        
                           
                           $d{\bf\beta}$
                        
                      to denote 
                        
                           
                           $d{\it\beta}_{1}\,d{\it\beta}_{2}\,d{\it\beta}_{3}$
                        
                     . We define 
and
 where 
                        
                           
                           ${\it\xi}_{j}=(a_{4,6+j},a_{5,6+j},a_{6,6+j})^{T}$
                        
                      for 
                        
                           
                           $1\leqslant j\leqslant n-6$
                        
                     . On writing 
                        
                           
                           $I_{3}=(\mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3})$
                        
                     , we introduce 
 where 
                        
                           
                           ${\it\gamma}_{j}^{T}=(a_{3+j,4},a_{3+j,5},a_{3+j,6})$
                        
                      for 
                        
                           
                           $1\leqslant j\leqslant 3$
                        
                     . With above notations, we have 
                           $$\begin{eqnarray}\displaystyle \int _{\mathfrak{m}}S({\it\alpha})\,d{\it\alpha} & = & \displaystyle \int _{\mathfrak{m}}\int _{[0,1]^{3}}{\mathcal{F}}({\it\alpha},{\bf\beta}){\mathcal{H}}_{1}({\it\alpha},{\bf\beta}){\mathcal{H}}_{2}({\it\alpha},{\bf\beta}){\mathcal{H}}_{3}({\it\alpha},{\bf\beta})\nonumber\\ \displaystyle & & \displaystyle \times \,\mathop{\prod }_{j=1}^{n-6}f_{j}({\it\alpha},{\bf\beta})\,d{\bf\beta}\,d{\it\alpha}.\nonumber\end{eqnarray}$$
                        
                     Therefore, one has the following inequality
                           $$\begin{eqnarray}\displaystyle \int _{\mathfrak{m}}|S({\it\alpha})|\,d{\it\alpha} & {\leqslant} & \displaystyle \int _{\mathfrak{m}}\int _{[0,1]^{3}}\bigg|{\mathcal{F}}({\it\alpha},{\bf\beta}){\mathcal{H}}_{1}({\it\alpha},{\bf\beta}){\mathcal{H}}_{2}({\it\alpha},{\bf\beta}){\mathcal{H}}_{3}({\it\alpha},{\bf\beta})\nonumber\\ \displaystyle & & \displaystyle \times \,\mathop{\prod }_{j=1}^{n-6}f_{j}({\it\alpha},{\bf\beta})\bigg|\,d{\bf\beta}\,d{\it\alpha}.\end{eqnarray}$$
                        
                      We first consider the case 
                        
                           
                           $\text{rank}(D)\geqslant 3$
                        
                     . Without loss of generality, we assume 
                        
                           
                           $d_{1}d_{2}d_{3}\not =0$
                        
                     . By (5.8) and the Cauchy–Schwarz inequality, one has 
                           $$\begin{eqnarray}\int _{\mathfrak{m}}|S({\it\alpha})|\,d{\it\alpha}\leqslant \,{\mathcal{I}}_{1}^{1/2}{\mathcal{I}}_{2}^{1/2}\sup _{\substack{ {\it\alpha}\in \mathfrak{m} \\ {\bf\beta}\in [0,1]^{3}}}\Big|\mathop{\prod }_{j=3}^{n-6}f_{j}({\it\alpha},{\bf\beta})\bigg|,\end{eqnarray}$$
                        
                     where
and
By Lemmas 5.6 and 5.7, one has
                           $$\begin{eqnarray}\displaystyle {\mathcal{I}}_{1} & \ll & \displaystyle L^{10}\mathop{\sum }_{\substack{ |\mathbf{x}|,|\mathbf{x}^{\prime }|,|z_{1}|,|z_{1}^{\prime }|,|z_{2}|,|z_{2}^{\prime }|\ll X \\ \mathbf{x}^{T}A_{1}\mathbf{x}+d_{1}z_{1}^{2}+d_{2}z_{2}^{2}=\mathbf{x}^{\prime T}A_{1}\mathbf{x}^{\prime }+d_{1}z_{1}^{\prime 2}+d_{2}z_{2}^{\prime 2} \\ \mathbf{x}^{T}B+z_{1}{\it\gamma}_{1}^{T}+z_{2}{\it\gamma}_{2}^{T}=\mathbf{x}^{\prime T}B+z_{1}^{\prime }{\it\gamma}_{1}^{T}+z_{2}^{\prime }{\it\gamma}_{2}^{T}}}1\nonumber\\ \displaystyle & \ll & \displaystyle L^{10}\mathop{\sum }_{\substack{ |\mathbf{x}|,|\mathbf{x}^{\prime }|,|z_{1}|,|z_{1}^{\prime }|,|z_{2}|,|z_{2}^{\prime }|\ll X \\ \mathbf{x}^{T}A_{1}\mathbf{x}^{\prime }+d_{1}z_{1}z_{1}^{\prime }+d_{2}z_{2}z_{2}^{\prime }=0 \\ \mathbf{x}^{T}B+z_{1}{\it\gamma}_{1}^{T}+z_{2}{\it\gamma}_{2}^{T}=0}}1.\nonumber\end{eqnarray}$$
                        
                      Since 
                        
                           
                           $B$
                        
                      is invertible, we obtain 
                           $$\begin{eqnarray}{\mathcal{I}}_{1}\ll L^{10}\mathop{\sum }_{\substack{ |\mathbf{x}^{\prime }|,|z_{1}|,|z_{1}^{\prime }|,|z_{2}|,|z_{2}^{\prime }|\ll X \\ -(z_{1}{\it\gamma}_{1}^{T}+z_{2}{\it\gamma}_{2}^{T})B^{-1}A_{1}\mathbf{x}^{\prime }+d_{1}z_{1}z_{1}^{\prime }+d_{2}z_{2}z_{2}^{\prime }=0}}1.\end{eqnarray}$$
                        
                     Then we conclude from Lemma 5.8 that
It follows from Lemmas 5.6–5.7 that
                           $$\begin{eqnarray}\displaystyle {\mathcal{I}}_{2} & \ll & \displaystyle L^{6}\!\mathop{\sum }_{\substack{ |w_{1}|,|w_{1}^{\prime }|,|w_{2}|,|w_{2}^{\prime }|,|w_{3}|,|w_{3}^{\prime }|,|y_{1}|,|y_{1}^{\prime }|,|y_{2}|,|y_{2}^{\prime }|,|y_{3}|,|y_{3}^{\prime }|\ll X \\ w_{1}y_{1}+w_{2}y_{2}+w_{3}y_{3}=w_{1}^{\prime }y_{1}^{\prime }+w_{2}^{\prime }y_{2}^{\prime }+w_{3}^{\prime }y_{3}^{\prime } \\ y_{1}{\it\gamma}_{1}^{T}-w_{1}\mathbf{e}_{1}^{T}+y_{2}{\it\gamma}_{2}^{T}-w_{2}\mathbf{e}_{2}^{T}+y_{3}{\it\gamma}_{3}^{T}-w_{3}\mathbf{e}_{3}^{T}=y_{1}^{\prime }{\it\gamma}_{1}^{T}-w_{1}^{\prime }\mathbf{e}_{1}^{T}+y_{2}^{\prime }{\it\gamma}_{2}^{T}-w_{2}^{\prime }\mathbf{e}_{2}^{T}+y_{3}^{\prime }{\it\gamma}_{3}^{T}-w_{3}^{\prime }\mathbf{e}_{3}^{T}}}1\nonumber\\ \displaystyle & \ll & \displaystyle L^{6}\mathop{\sum }_{\substack{ |w_{1}|,|w_{1}^{\prime }|,|w_{2}|,|w_{2}^{\prime }|,|w_{3}|,|w_{3}^{\prime }|,|y_{1}|,|y_{1}^{\prime }|,|y_{2}|,|y_{2}^{\prime }|,|y_{3}|,|y_{3}^{\prime }|\ll X \\ w_{1}y_{1}^{\prime }+w_{1}^{\prime }y_{1}+w_{2}y_{2}^{\prime }+w_{2}^{\prime }y_{2}+w_{3}y_{3}^{\prime }+w_{3}^{\prime }y_{3}=0 \\ y_{1}{\it\gamma}_{1}^{T}-w_{1}\mathbf{e}_{1}^{T}+y_{2}{\it\gamma}_{2}^{T}-w_{2}\mathbf{e}_{2}^{T}+y_{3}{\it\gamma}_{3}^{T}-w_{3}\mathbf{e}_{3}^{T}=0}}1\nonumber\\ \displaystyle & \ll & \displaystyle L^{6}\mathop{\sum }_{\substack{ |w_{1}^{\prime }|,|w_{2}^{\prime }|,|w_{3}^{\prime }|,|y_{1}|,|y_{1}^{\prime }|,|y_{2}|,|y_{2}^{\prime }|,|y_{3}|,|y_{3}^{\prime }|\ll X \\ \mathbf{y}^{T}({\it\gamma}_{1},{\it\gamma}_{2},{\it\gamma}_{3})^{T}\mathbf{y}^{\prime }+\mathbf{y}^{T}\mathbf{w}^{\prime }=\mathbf{0}}}1,\nonumber\end{eqnarray}$$
                        
                      where 
                        
                           
                           $\mathbf{y}=(y_{1},y_{2},y_{3})^{T}$
                        
                     , 
                        
                           
                           $\mathbf{y}^{\prime }=(y_{1}^{\prime },y_{2}^{\prime },y_{3}^{\prime })^{T}$
                        
                      and 
                        
                           
                           $\mathbf{w}^{\prime }=(w_{1}^{\prime },w_{2}^{\prime },w_{3}^{\prime })^{T}$
                        
                     . Then by Lemma 5.8, we have 
 Since 
                        
                           
                           $d_{3}\not =0$
                        
                     , we obtain by Lemma 4.3
                     
and thereby
                           $$\begin{eqnarray}\sup _{\substack{ {\it\alpha}\in \mathfrak{m} \\ {\bf\beta}\in [0,1]^{3}}}\bigg|\mathop{\prod }_{j=3}^{n-6}f_{j}({\it\alpha},{\bf\beta})\bigg|\ll X^{n-8}L^{-K/5}.\end{eqnarray}$$
                        
                     Now we conclude from (5.9), (5.12)–(5.14) that
 Next we consider the case 
                        
                           
                           $1\leqslant \text{rank}(D)\leqslant 2$
                        
                     . Without loss of generality, we suppose that 
                        
                           
                           $d_{1}\not =0$
                        
                      and 
                        
                           
                           $d_{k}=0$
                        
                      for 
                        
                           
                           $3\leqslant k\leqslant n$
                        
                     . Since 
                        
                           
                           $\text{rank}(A)\geqslant 9$
                        
                     , there exists 
                        
                           
                           $k$
                        
                      with 
                        
                           
                           $3\leqslant k\leqslant n-6$
                        
                      such that 
                        
                           
                           ${\it\xi}_{k}\not =0\in \mathbb{Z}^{3}$
                        
                     . Then we can find 
                        
                           
                           $i,j$
                        
                      with 
                        
                           
                           $1\leqslant i<j\leqslant 3$
                        
                      so that 
                        
                           
                           $\text{rank}(\mathbf{e}_{i},\mathbf{e}_{j},{\it\xi}_{k})=3$
                        
                     . Without loss of generality, we can assume that 
                        
                           
                           $i=1,j=2$
                        
                      and 
                        
                           
                           $k=3$
                        
                     . One has 
                           $$\begin{eqnarray}\displaystyle \int _{\mathfrak{m}}|S({\it\alpha})|\,d{\it\alpha} & {\leqslant} & \displaystyle \sup _{\substack{ {\it\alpha}\in \mathfrak{m} \\ {\bf\beta}\in [0,1]^{3}}}\bigg|\mathop{\prod }_{j\not =3}f_{j}({\it\alpha},{\bf\beta})\bigg|\bigg(\int _{[0,1]^{4}}|{\mathcal{F}}({\it\alpha},{\bf\beta}){\mathcal{H}}_{3}({\it\alpha},{\bf\beta})|^{2}\,d{\bf\beta}\,d{\it\alpha}\bigg)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \times \,\bigg(\int _{[0,1]^{4}}|{\mathcal{H}}_{1}({\it\alpha},{\bf\beta}){\mathcal{H}}_{2}({\it\alpha},{\bf\beta})f_{3}({\it\alpha},{\bf\beta})|^{2}\,d{\bf\beta}\,d{\it\alpha}\bigg)^{1/2}.\nonumber\end{eqnarray}$$
                        
                     We deduce from Lemmas 5.6–5.7 that
                           $$\begin{eqnarray}\displaystyle \int _{[0,1]^{4}}|{\mathcal{F}}({\it\alpha},{\bf\beta}){\mathcal{H}}_{3}({\it\alpha},{\bf\beta})|^{2}\,d{\bf\beta}\,d{\it\alpha} & \ll & \displaystyle L^{8}\mathop{\sum }_{\substack{ |\mathbf{x}|,|\mathbf{x}^{\prime }|,|w|,|w^{\prime }|,|y|,|y^{\prime }|\ll X \\ \mathbf{x}^{T}A_{1}\mathbf{x}+wy={\mathbf{x}^{\prime }}^{T}A_{1}\mathbf{x}^{\prime }+w^{\prime }y^{\prime } \\ 2\mathbf{x}^{T}B+y{\it\gamma}_{3}^{T}-w\mathbf{e}_{3}^{T}=2{\mathbf{x}^{\prime }}^{T}B+y^{\prime }{\it\gamma}_{3}^{T}-w^{\prime }\mathbf{e}_{3}^{T}}}1\nonumber\\ \displaystyle & \ll & \displaystyle L^{8}\mathop{\sum }_{\substack{ |\mathbf{x}|,|\mathbf{x}^{\prime }|,|w|,|w^{\prime }|,|y|,|y^{\prime }|\ll X \\ 2\mathbf{x}^{T}A_{1}\mathbf{x}^{\prime }+wy^{\prime }+w^{\prime }y=0 \\ 2\mathbf{x}^{T}B+y{\it\gamma}_{3}^{T}-w\mathbf{e}_{3}^{T}=0}}1\nonumber\\ \displaystyle & \ll & \displaystyle L^{8}\mathop{\sum }_{\substack{ |\mathbf{x}^{\prime }|,|w|,|w^{\prime }|,|y|,|y^{\prime }|\ll X \\ -(y{\it\gamma}_{3}^{T}-w\mathbf{e}_{3}^{T})B^{-1}A_{1}\mathbf{x}^{\prime }+wy^{\prime }+w^{\prime }y=0}}1.\nonumber\end{eqnarray}$$
                        
                     Then by Lemma 5.8, one has
We deduce from Lemmas 5.6–5.7 again that
                           $$\begin{eqnarray}\displaystyle & & \displaystyle \int _{[0,1]^{4}}|{\mathcal{H}}_{1}({\it\alpha},{\bf\beta}){\mathcal{H}}_{2}({\it\alpha},{\bf\beta})f_{3}({\it\alpha},{\bf\beta})|^{2}\,d{\bf\beta}\,d{\it\alpha}\nonumber\\ \displaystyle & & \displaystyle \quad \ll L^{6}\mathop{\sum }_{\substack{ |w_{1}|,|w_{1}^{\prime }|,|w_{2}|,|w_{2}^{\prime }|,|y_{1}|,|y_{1}^{\prime }|,|y_{2}|,|y_{2}^{\prime }|,|z|,|z^{\prime }|\ll X \\ w_{1}y_{1}+w_{2}y_{2}+d_{3}z^{2}=w_{1}^{\prime }y_{1}^{\prime }+w_{2}^{\prime }y_{2}^{\prime }+d_{3}{z^{\prime }}^{2} \\ y_{1}{\it\gamma}_{1}^{T}+y_{2}{\it\gamma}_{2}^{T}-w_{1}\mathbf{e}_{1}^{T}-w_{2}\mathbf{e}_{2}^{T}+2z{\it\xi}_{3}^{T}=y_{1}^{\prime }{\it\gamma}_{1}^{T}+y_{2}^{\prime }{\it\gamma}_{2}^{T}-w_{1}^{\prime }\mathbf{e}_{1}^{T}-w_{2}^{\prime }\mathbf{e}_{2}^{T}+2z^{\prime }{\it\xi}_{3}^{T}}}1\nonumber\\ \displaystyle & & \displaystyle \quad \ll L^{6}\mathop{\sum }_{\substack{ |w_{1}|,|w_{1}^{\prime }|,|w_{2}|,|w_{2}^{\prime }|,|y_{1}|,|y_{1}^{\prime }|,|y_{2}|,|y_{2}^{\prime }|,|z|,|z^{\prime }|\ll X \\ w_{1}y_{1}^{\prime }+w_{1}^{\prime }y_{1}+w_{2}y_{2}^{\prime }+w_{2}^{\prime }y_{2}+2d_{3}zz^{\prime }=0 \\ y_{1}{\it\gamma}_{1}^{T}+y_{2}{\it\gamma}_{2}^{T}-w_{1}\mathbf{e}_{1}^{T}-w_{2}\mathbf{e}_{2}^{T}+2z{\it\xi}_{3}^{T}=0}}1.\nonumber\end{eqnarray}$$
                        
                      On applying 
                        
                           
                           $\text{rank}(\mathbf{e}_{1},\mathbf{e}_{2},{\it\xi}_{3})=3$
                        
                      and Lemma 5.8, we obtain 
It follows from Lemma 4.3 that
Then we conclude from (5.15)–(5.17) that
 Now it suffices to assume 
                        
                           
                           $D=0$
                        
                     . Then the matrix 
                        
                           
                           $A$
                        
                      is in the form 
                           $$\begin{eqnarray}A=\left(\begin{array}{@{}ccc@{}}A_{1} & B & 0\\ B^{T} & A_{2} & C\\ 0 & C^{T} & 0\end{array}\right).\end{eqnarray}$$
                        
                      It follows from 
                        
                           
                           $\text{rank}(A)\geqslant 9$
                        
                      that 
                        
                           
                           $\text{rank}(C)\geqslant 3$
                        
                     . By Lemma 4.6, 
This completes the proof of Lemma 5.2.
5.2 Proof of Lemma 5.3
Lemma 5.10. If 
                        
                           
                           $\text{rank}(B_{1})=\text{rank}(B_{2})=2$
                        
                      and 
                        
                           
                           $\text{rank}(B_{3})=3$
                        
                     , then the symmetric integral matrix 
                        
                           
                           $A$
                        
                      can be written in the form 
                           $$\begin{eqnarray}A=\left(\begin{array}{@{}ccc@{}}A_{1} & C & {\it\gamma}_{3}{\it\xi}^{T}\\ C^{T} & A_{2} & V\\ {\it\xi}{\it\gamma}_{3}^{T} & V^{T} & D+h{\it\xi}{\it\xi}^{T}\end{array}\right),\end{eqnarray}$$
                        
                      where 
                        
                           
                           $C=({\it\gamma}_{1},{\it\gamma}_{2})\in M_{3,2}(\mathbb{Z})$
                        
                     , 
                        
                           
                           ${\it\gamma}_{3}\in \mathbb{Q}^{3}$
                        
                     , 
                        
                           
                           ${\it\xi}\in \mathbb{Z}^{n-5}$
                        
                     , 
                        
                           
                           $V\in M_{2,n-5}(\mathbb{Z})$
                        
                     , 
                        
                           
                           $h\in \mathbb{Q}$
                        
                      and 
                        
                           
                           $D=\text{diag}\{d_{1},\ldots ,d_{n-5}\}\in M_{n-5,n-5}(\mathbb{Q})$
                        
                      is a diagonal matrix. Moreover, one has 
                        
                           
                           $({\it\gamma}_{1},{\it\gamma}_{2},{\it\gamma}_{3})\in GL_{3}(\mathbb{Q})$
                        
                     .
Proof. Let us write
                           $$\begin{eqnarray}{\it\gamma}_{j}^{\prime }=\left(\begin{array}{@{}c@{}}a_{1,\,3+j}\\ a_{2,\,3+j}\\ a_{3,\,3+j}\end{array}\right)\quad \text{for }1\leqslant j\leqslant n-3.\end{eqnarray}$$
                        
                      Since 
                        
                           
                           $\text{rank}({\it\gamma}_{1}^{\prime },{\it\gamma}_{2}^{\prime },{\it\gamma}_{3}^{\prime })=\text{rank}(B)=3$
                        
                     , we conclude that 
                        
                           
                           ${\it\gamma}_{1}^{\prime }$
                        
                     , 
                        
                           
                           ${\it\gamma}_{2}^{\prime }$
                        
                      and 
                        
                           
                           ${\it\gamma}_{3}^{\prime }$
                        
                      are linearly independent. For any 
                        
                           
                           $4\leqslant j\leqslant n-3$
                        
                     , we deduce from 
                        
                           
                           $\text{rank}(B_{1})=\text{rank}(B_{2})=2$
                        
                      that 
                        
                           
                           ${\it\gamma}_{j}^{\prime }\in <{\it\gamma}_{2}^{\prime },{\it\gamma}_{3}^{\prime }>\cap <{\it\gamma}_{1}^{\prime },{\it\gamma}_{3}^{\prime }>=<{\it\gamma}_{3}^{\prime }>$
                        
                     . Therefore, we can write 
                        
                           
                           $A$
                        
                      in the form 
                           $$\begin{eqnarray}A=\left(\begin{array}{@{}ccc@{}}A_{1} & C & {\it\gamma}_{3}{\it\xi}^{T}\\ C^{T} & A_{2} & V\\ {\it\xi}{\it\gamma}_{3}^{T} & V^{T} & A_{3}\end{array}\right),\end{eqnarray}$$
                        
                      where 
                        
                           
                           $C=({\it\gamma}_{1},{\it\gamma}_{2})\in M_{3,2}(\mathbb{Z})$
                        
                     , 
                        
                           
                           ${\it\gamma}_{3}\in \mathbb{Q}^{3}$
                        
                     , 
                        
                           
                           ${\it\xi}\in \mathbb{Z}^{n-5}$
                        
                     , 
                        
                           
                           $V\in M_{2,n-5}(\mathbb{Z})$
                        
                      and 
                        
                           
                           $A_{3}\in M_{n-5,n-5}(\mathbb{Q})$
                        
                     .
 For 
                        
                           
                           $6\leqslant j\leqslant n$
                        
                     . we define 
                        
                           
                           ${\it\eta}_{j}^{T}=(a_{j,4},\ldots ,a_{j,j-1},a_{j,j+1},\ldots ,a_{j,n})^{T}\in \mathbb{Z}^{n-4}$
                        
                     . Then we set 
                        
                           
                           ${\it\theta}_{i,j}^{T}=(a_{i,4},\ldots ,a_{i,j-1},a_{i,j+1},\ldots ,a_{i,n})^{T}\in \mathbb{Z}^{n-4}$
                        
                      for 
                        
                           
                           $1\leqslant i\leqslant 3$
                        
                     . Since 
                        
                           
                           $\text{rank}_{\text{off}}(A)=\text{rank}(B)=\text{rank}(B_{3})=3$
                        
                     , 
                        
                           
                           ${\it\eta}_{j}$
                        
                      can be linearly represented by 
                        
                           
                           ${\it\theta}_{1,j}$
                        
                     , 
                        
                           
                           ${\it\theta}_{2,j}$
                        
                      and 
                        
                           
                           ${\it\theta}_{3,j}$
                        
                     . Let 
 Then one can choose 
                        
                           
                           $a_{j,j}^{\prime }\in \mathbb{Q}$
                        
                      such that 
                        
                           
                           $(a_{j,4},\ldots ,a_{j,j-1},a_{j,j}^{\prime },a_{j,j+1},\ldots ,a_{j,n})$
                        
                      is linearly represented by 
                        
                           
                           ${\it\theta}_{1}$
                        
                     , 
                        
                           
                           ${\it\theta}_{2}$
                        
                      and 
                        
                           
                           ${\it\theta}_{3}$
                        
                     . We consider 
                        
                           
                           $A_{3}$
                        
                      and 
                        
                           
                           $A_{3}^{\prime }$
                        
                      defined as 
                           $$\begin{eqnarray}A_{3}=\left(\begin{array}{@{}ccc@{}}a_{6,6} & \cdots \, & a_{6,n}\\ \vdots & \cdots \, & \vdots \\ a_{n,6} & \cdots \, & a_{n,n}\end{array}\right)\quad \text{and}\quad A_{3}^{\prime }=\left(\begin{array}{@{}ccc@{}}a_{6,6}^{\prime } & \cdots \, & a_{6,n}^{\prime }\\ \vdots & \cdots \, & \vdots \\ a_{n,6}^{\prime } & \cdots \, & a_{n,n}^{\prime }\end{array}\right),\end{eqnarray}$$
                        
                      where 
                        
                           
                           $a_{i,j}^{\prime }=a_{i,j}$
                        
                      for 
                        
                           
                           $6\leqslant i\not =j\leqslant n$
                        
                     . Since 
                        
                           
                           $A_{3}^{\prime }$
                        
                      is symmetric, we conclude from above that 
                        
                           
                           $A_{3}^{\prime }=h{\it\xi}{\it\xi}^{T}$
                        
                      for some 
                        
                           
                           $h\in \mathbb{Q}$
                        
                     . The proof is completed by noting that 
                        
                           
                           $D=A_{3}-A_{3}^{\prime }$
                        
                      is a diagonal matrix.◻
Proof of Lemma 5.3.
One can deduce from Lemma 5.10 that
                           $$\begin{eqnarray}\displaystyle S({\it\alpha}) & = & \displaystyle \mathop{\sum }_{\substack{ \mathbf{x}\in \mathbb{N}^{3} \\ 1\leqslant \mathbf{x}\leqslant X}}\mathop{\sum }_{\substack{ \mathbf{y}\in \mathbb{N}^{2} \\ 1\leqslant \mathbf{y}\leqslant X}}\mathop{\sum }_{\substack{ \mathbf{z}\in \mathbb{N}^{n-5} \\ 1\leqslant \mathbf{z}\leqslant X}}e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+2\mathbf{x}^{T}{\it\gamma}_{3}{\it\xi}^{T}\mathbf{z}+\mathbf{z}^{T}D\mathbf{z}+h\mathbf{z}^{T}{\it\xi}{\it\xi}^{T}\mathbf{z}))\nonumber\\ \displaystyle & & \displaystyle \times \,e({\it\alpha}(2\mathbf{x}^{T}C\mathbf{y}+\mathbf{y}^{T}A_{2}\mathbf{y}+2\mathbf{z}^{T}V^{T}\mathbf{y})){\rm\Lambda}(\mathbf{x}){\rm\Lambda}(\mathbf{y}){\rm\Lambda}(\mathbf{z}).\nonumber\end{eqnarray}$$
                        
                      We introduce new variables 
                        
                           
                           $\mathbf{w}\in \mathbb{Z}^{2}$
                        
                      and 
                        
                           
                           $s\in \mathbb{Z}$
                        
                      to replace 
                        
                           
                           $2\mathbf{x}^{T}C+\mathbf{y}^{T}A_{2}+2\mathbf{z}^{T}V^{T}$
                        
                      and 
                        
                           
                           ${\it\xi}^{T}\mathbf{z}$
                        
                     , respectively. Therefore, we have 
                           $$\begin{eqnarray}\displaystyle S({\it\alpha}) & = & \displaystyle \int _{[0,1]^{3}}\mathop{\sum }_{|s|\ll X}\mathop{\sum }_{\substack{ \mathbf{w}\in \mathbb{Z}^{2} \\ |\mathbf{w}|\ll X}}\mathop{\sum }_{\substack{ \mathbf{x}\in \mathbb{N}^{3} \\ 1\leqslant \mathbf{x}\leqslant X}}\mathop{\sum }_{\substack{ \mathbf{y}\in \mathbb{N}^{2} \\ 1\leqslant \mathbf{y}\leqslant X}}\mathop{\sum }_{\substack{ \mathbf{z}\in \mathbb{N}^{n-5} \\ 1\leqslant \mathbf{z}\leqslant X}}{\rm\Lambda}(\mathbf{x}){\rm\Lambda}(\mathbf{y}){\rm\Lambda}(\mathbf{z})\nonumber\\ \displaystyle & & \displaystyle \times \,e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+\mathbf{w}^{T}\mathbf{y}+\mathbf{z}^{T}D\mathbf{z}+2\mathbf{x}^{T}{\it\gamma}_{3}s+hs^{2}))\nonumber\\ \displaystyle & & \displaystyle \times \,e((2\mathbf{x}^{T}C+\mathbf{y}^{T}A_{2}+2\mathbf{z}^{T}V^{T}-\mathbf{w}^{T}){\bf\beta}^{\prime })\nonumber\\ \displaystyle & & \displaystyle \times \,e(({\it\xi}^{T}\mathbf{z}-s){\it\beta}_{3})\,d{\bf\beta},\nonumber\end{eqnarray}$$
                        
                      where 
                        
                           
                           ${\bf\beta}^{\prime }=({\it\beta}_{1},{\it\beta}_{2})^{T}$
                        
                     , 
                        
                           
                           ${\bf\beta}=({\it\beta}_{1},{\it\beta}_{2},{\it\beta}_{3})^{T}$
                        
                      and 
                        
                           
                           $d{\bf\beta}=d{\it\beta}_{1}\,d{\it\beta}_{2}\,d{\it\beta}_{3}$
                        
                     . We define 
 On writing 
                        
                           
                           $I_{2}=(\mathbf{e}_{1},\mathbf{e}_{2})$
                        
                     , we introduce 
 where 
                        
                           
                           ${\it\rho}_{j}=(a_{3+j,4},a_{3+j,5})^{T}$
                        
                      for 
                        
                           
                           $1\leqslant j\leqslant 2$
                        
                     . Let 
                        
                           
                           ${\it\xi}=({\it\epsilon}_{1},\ldots ,{\it\epsilon}_{n-5})^{T}$
                        
                     . Then we define 
 where 
                        
                           
                           $V=({\it\upsilon}_{1},\ldots ,{\it\upsilon}_{n-5})$
                        
                      with 
                        
                           
                           ${\it\upsilon}_{j}=(a_{4,5+j},a_{5,5+j})^{T}$
                        
                      for 
                        
                           
                           $1\leqslant j\leqslant n-5$
                        
                     . With above notations, we obtain 
Let
and
 By (5.19) and the Cauchy–Schwarz inequality, one has for 
                        
                           
                           $i\not =j$
                        
                      that 
One can deduce by Lemmas 5.6 and 5.7 that
                           $$\begin{eqnarray}{\mathcal{J}}_{1}\ll L^{8}\mathop{\sum }_{\substack{ |\mathbf{x}|,|\mathbf{x}^{\prime }|,|s|,|s^{\prime }|,|z|,|z^{\prime }|\ll X \\ \mathbf{x}^{T}A_{1}\mathbf{x}^{\prime }+\mathbf{x}^{T}{\it\gamma}_{3}s^{\prime }+s{\it\gamma}_{3}^{T}\mathbf{x}^{\prime }+hss^{\prime }+d_{i}zz^{\prime }=0 \\ \mathbf{x}^{T}C+z{\it\upsilon}_{i}^{T}=0 \\ s={\it\epsilon}_{i}z}}1.\end{eqnarray}$$
                        
                     Note that
                           $$\begin{eqnarray}\displaystyle \mathop{\sum }_{\substack{ |\mathbf{x}|,|\mathbf{x}^{\prime }|,|s|,|s^{\prime }|,|z|,|z^{\prime }|\ll X \\ \mathbf{x}^{T}A_{1}\mathbf{x}^{\prime }+\mathbf{x}^{T}{\it\gamma}_{3}s^{\prime }+s{\it\gamma}_{3}^{T}\mathbf{x}^{\prime }+hss^{\prime }+d_{i}zz^{\prime }=0 \\ \mathbf{x}^{T}C+z{\it\upsilon}_{i}^{T}=0 \\ s={\it\epsilon}_{i}z}}1 & = & \displaystyle \mathop{\sum }_{\substack{ |\mathbf{x}|,|\mathbf{x}^{\prime }|,|s^{\prime }|,|z|,|z^{\prime }|\ll X \\ \mathbf{x}^{T}A_{1}\mathbf{x}^{\prime }+\mathbf{x}^{T}{\it\gamma}_{3}s^{\prime }+{\it\epsilon}_{i}z{\it\gamma}_{3}^{T}\mathbf{x}^{\prime }+h{\it\epsilon}_{i}zs^{\prime }+d_{i}zz^{\prime }=0 \\ \mathbf{x}^{T}C+z{\it\upsilon}_{i}^{T}=0}}1\nonumber\\ \displaystyle & = & \displaystyle \mathop{\sum }_{\substack{ |\mathbf{x}|,|\mathbf{x}^{\prime }|,|s|,|s^{\prime }|,|z|,|z^{\prime }|\ll X \\ \mathbf{x}^{T}A_{1}\mathbf{x}^{\prime }+ss^{\prime }+{\it\epsilon}_{i}z{\it\gamma}_{3}^{T}\mathbf{x}^{\prime }+h{\it\epsilon}_{i}zs^{\prime }+d_{i}zz^{\prime }=0 \\ \mathbf{x}^{T}(C,{\it\gamma}_{3})+(z{\it\upsilon}_{i}^{T},-s)=0}}1.\nonumber\end{eqnarray}$$
                        
                      Recalling 
                        
                           
                           $\text{rank}(C,{\it\gamma}_{3})=3$
                        
                     , one can replace 
                        
                           
                           $\mathbf{x}$
                        
                      by 
                        
                           
                           $-(z{\it\upsilon}_{i}^{T},-s)(C,{\it\gamma}_{3})^{-1}$
                        
                     . Therefore, by Lemma 5.8, one has 
The argument leading to (5.16) also implies
 Now we are able to handle the case 
                        
                           
                           $\text{rank}(D)\geqslant 2$
                        
                     . Since 
                        
                           
                           $\text{rank}(B_{3})=3$
                        
                     , one has 
                        
                           
                           ${\it\epsilon}_{l}\not =0$
                        
                      for some 
                        
                           
                           $l$
                        
                      satisfying 
                        
                           
                           $2\leqslant l\leqslant n-5$
                        
                     . We may assume 
                        
                           
                           ${\it\epsilon}_{2}\not =0$
                        
                     . We also have 
                        
                           
                           ${\it\epsilon}_{1}\not =0$
                        
                      due to 
                        
                           
                           $\text{rank}(B)=3$
                        
                     . If 
                        
                           
                           $d_{l}\not =0$
                        
                      for some 
                        
                           
                           $l\geqslant 3$
                        
                     , then we can find 
                        
                           
                           $i,j,k$
                        
                      pairwise distinct so that 
                        
                           
                           ${\it\epsilon}_{j}\not =0$
                        
                      and 
                        
                           
                           $d_{i}d_{k}\not =0$
                        
                     . If 
                        
                           
                           $d_{1}d_{2}\not =0$
                        
                      and 
                        
                           
                           ${\it\epsilon}_{j}\not =0$
                        
                      for some 
                        
                           
                           $j\geqslant 3$
                        
                     , then we can also find 
                        
                           
                           $i,j,k$
                        
                      pairwise distinct so that 
                        
                           
                           ${\it\epsilon}_{j}\not =0$
                        
                      and 
                        
                           
                           $d_{i}d_{k}\not =0$
                        
                     . In these cases, we can conclude from (5.20)–(5.22) that 
 Next we assume 
                        
                           
                           $d_{l}={\it\epsilon}_{l}=0$
                        
                      for all 
                        
                           
                           $l\geqslant 3$
                        
                     . Then we can represent 
                        
                           
                           $A$
                        
                      in the form 
                           $$\begin{eqnarray}A=\left(\begin{array}{@{}ccc@{}}A_{1} & H & 0\\ H^{T} & Y & W\\ 0 & W^{T} & 0\end{array}\right),\end{eqnarray}$$
                        
                      where 
                        
                           
                           $H\in M_{3,4}(\mathbb{Z})$
                        
                     , 
                        
                           
                           $Y\in M_{4,4}(\mathbb{Z})$
                        
                      and 
                        
                           
                           $W\in M_{4,n-7}(\mathbb{Z})$
                        
                     . It follows from 
                        
                           
                           $\text{rank}(B)=3$
                        
                      and 
                        
                           
                           $\text{rank}(A)\geqslant 9$
                        
                      that 
                        
                           
                           $\text{rank}(H)\geqslant 3$
                        
                      and 
                        
                           
                           $\text{rank}(W)\geqslant 2$
                        
                     . We apply Lemma 4.6 to conclude 
 We are left to handle the case 
                        
                           
                           $\text{rank}(D)\leqslant 1$
                        
                     . Since 
                        
                           
                           $\text{rank}(D)+\text{rank}(V)+1+5\geqslant \text{rank}(A)\geqslant 9$
                        
                     , we obtain 
                        
                           
                           $\text{rank}(D)\geqslant 1$
                        
                     . Therefore, 
                        
                           
                           $\text{rank}(D)=1$
                        
                     . We have 
where
and
                           $$\begin{eqnarray}{\mathcal{J}}_{3}\ll L^{8}\mathop{\sum }_{\substack{ |\mathbf{x}|,|\mathbf{x}^{\prime }|,|s|,|s^{\prime }|,|y|,|y^{\prime }|,|w|,|w^{\prime }|\ll X \\ 2\mathbf{x}^{T}A_{1}\mathbf{x}^{\prime }+2\mathbf{x}^{T}{\it\gamma}_{3}s^{\prime }+2hss^{\prime }+2s{\it\gamma}_{3}^{T}\mathbf{x}^{\prime }+wy^{\prime }+yw^{\prime }=0 \\ 2\mathbf{x}^{T}C+y{\it\rho}_{1}^{T}-w\mathbf{e}_{1}^{T}=0 \\ s=0}}1.\end{eqnarray}$$
                        
                      Since 
                        
                           
                           $\text{rank}(C)\geqslant 3$
                        
                     , we can represent two of 
                        
                           
                           $x_{1},x_{2},x_{3}$
                        
                      (say 
                        
                           
                           $x_{1}$
                        
                      and 
                        
                           
                           $x_{2}$
                        
                     ) in terms of 
                        
                           
                           $x_{3}$
                        
                     , 
                        
                           
                           $y$
                        
                      and 
                        
                           
                           $w$
                        
                     . Then by Lemma 5.8, one has 
 We deduce from Lemma 5.10 that 
                        
                           
                           $\text{rank}\left(\begin{array}{@{}c@{}}{\it\xi}^{T}\\ V\end{array}\right)\geqslant \text{rank}(A)-5-\text{rank}(D)\geqslant 3$
                        
                     . Therefore, there exist distinct 
                        
                           
                           $i,j,k,s$
                        
                      such that 
                        
                           
                           $\text{rank}\left(\begin{array}{@{}ccc@{}}{\it\upsilon}_{i}^{T} & {\it\upsilon}_{j}^{T} & {\it\upsilon}_{k}^{T}\\ {\it\epsilon}_{i} & {\it\epsilon}_{j} & {\it\epsilon}_{k}\end{array}\right)=3$
                        
                      and 
                        
                           
                           $d_{s}\not =0$
                        
                     . By Lemmas 5.6–5.7, we also have 
                           $$\begin{eqnarray}{\mathcal{J}}_{4}\ll L^{8}\mathop{\sum }_{\substack{ |y|,|y^{\prime }|,|w|,|w^{\prime }|,|z_{1}|,|z_{1}^{\prime }|,|z_{2}|,|z_{2}^{\prime }|,|z_{3}|,|z_{3}^{\prime }|\ll X \\ wy^{\prime }+yw^{\prime }+2d_{i}z_{1}z_{1}^{\prime }+2d_{j}z_{2}z_{2}^{\prime }+2d_{k}z_{3}z_{3}^{\prime }=0 \\ y{\it\rho}_{2}^{T}-w\mathbf{e}_{2}^{T}+2z_{1}{\it\upsilon}_{i}^{T}+2z_{2}{\it\upsilon}_{j}^{T}+2z_{3}{\it\upsilon}_{k}^{T}=0 \\ {\it\epsilon}_{i}z_{1}+{\it\epsilon}_{j}z_{2}+{\it\epsilon}_{k}z_{3}=0}}1.\end{eqnarray}$$
                        
                      Hence we can replace 
                        
                           
                           $z_{1},z_{2}$
                        
                      and 
                        
                           
                           $z_{3}$
                        
                      by linear functions of 
                        
                           
                           $y$
                        
                      and 
                        
                           
                           $w$
                        
                     , and it follows that 
Hence we can obtain again that
The proof of Lemma 5.3 is finished.
5.3 Proof of Lemma 5.4
The proof of Lemma 5.10 can be modified to establish the following result. The detail of the proof is omitted.
Lemma 5.11. If 
                        
                           
                           $\text{rank}(B_{1})=2$
                        
                      and 
                        
                           
                           $\text{rank}(B_{2})=\text{rank}(B_{3})=3$
                        
                     , then we can write 
                        
                           
                           $A$
                        
                      in the form 
                           $$\begin{eqnarray}A=\left(\begin{array}{@{}ccc@{}}A_{1} & {\it\gamma}_{1} & ({\it\gamma}_{2},{\it\gamma}_{3})C\\ {\it\gamma}_{1}^{T} & a & {\it\upsilon}^{T}\\ C^{T}({\it\gamma}_{2},{\it\gamma}_{3})^{T} & {\it\upsilon} & D+C^{T}HC\end{array}\right),\end{eqnarray}$$
                        
                      where 
                        
                           
                           ${\it\gamma}_{1}\in \mathbb{Z}^{3}$
                        
                     , 
                        
                           
                           ${\it\gamma}_{2},{\it\gamma}_{3}\in \mathbb{Q}^{3}$
                        
                     , 
                        
                           
                           $C\in M_{2,n-4}(\mathbb{Z})$
                        
                     , 
                        
                           
                           $a\in \mathbb{Z}$
                        
                     , 
                        
                           
                           ${\it\upsilon}\in \mathbb{Z}^{n-4}$
                        
                     , 
                        
                           
                           $H\in M_{2,2}(\mathbb{Q})$
                        
                      and 
                        
                           
                           $D=\text{diag}\{d_{1},\ldots ,d_{n-4}\}\in M_{n-4,n-4}(\mathbb{Q})$
                        
                      is a diagonal matrix. Moreover, one has 
                        
                           
                           $({\it\gamma}_{1},{\it\gamma}_{2},{\it\gamma}_{3})\in GL_{3}(\mathbb{Q})$
                        
                     .
Lemma 5.12. Let 
                        
                           
                           $A$
                        
                      be given by (5.26). We write 
Let
 Under the conditions in Lemma 5.11, one can find pairwise distinct 
                        
                           
                           $i,j,k,u$
                        
                      with 
                        
                           
                           $1\leqslant i,j,k,u\leqslant n-4$
                        
                      such that at least one of the following two statements holds: (i) 
                        
                           
                           $\text{rank}(R_{i,j,k})=3$
                        
                      and 
                        
                           
                           $d_{u}\not =0$
                        
                     ; (ii) 
                        
                           
                           $\text{rank}({\it\xi}_{i},{\it\xi}_{j})=2$
                        
                      and 
                        
                           
                           $d_{k}d_{u}\not =0$
                        
                     .
Proof. It follows from 
                        
                           
                           $9\leqslant \text{rank}(A)\leqslant \text{rank}(D)+\text{rank}({\it\upsilon})+\text{rank}(C)+4$
                        
                      that 
                        
                           
                           $\text{rank}(D)\geqslant 2$
                        
                     . If 
                        
                           
                           $\text{rank}(D)=2$
                        
                     , say 
                        
                           
                           $d_{1}d_{2}\not =0$
                        
                     , then 
                        
                           
                           $\text{rank}(R)\geqslant 3$
                        
                     , where 
 Then statement (i) holds. Next we assume 
                        
                           
                           $\text{rank}(D)\geqslant 3$
                        
                     . Note that 
                        
                           
                           $\text{rank}({\it\xi}_{1},{\it\xi}_{2})=2$
                        
                      due to 
                        
                           
                           $\text{rank}(B)=3$
                        
                     . If 
                        
                           
                           $d_{r}d_{s}\not =0$
                        
                      for some 
                        
                           
                           $r>s\geqslant 3$
                        
                     , then statement (ii) follows by choosing 
                        
                           
                           $i=1,j=2,k=r$
                        
                      and 
                        
                           
                           $u=s$
                        
                     . Therefore, we now assume that 
                        
                           
                           $\text{rank}(D)=3$
                        
                      and 
                        
                           
                           $d_{1}d_{2}\not =0$
                        
                     . Without loss of generality, we suppose that 
                        
                           
                           $d_{3}\not =0$
                        
                      and 
                        
                           
                           $d_{s}=0(4\leqslant s\leqslant n-4)$
                        
                     . We consider 
                        
                           
                           $\text{rank}({\it\xi}_{1},{\it\xi}_{s})$
                        
                      and 
                        
                           
                           $\text{rank}({\it\xi}_{2},{\it\xi}_{s})$
                        
                      for 
                        
                           
                           $4\leqslant s\leqslant n-4$
                        
                     . If 
                        
                           
                           $\text{rank}({\it\xi}_{1},{\it\xi}_{s})=2$
                        
                      for some 
                        
                           
                           $s$
                        
                      with 
                        
                           
                           $4\leqslant s\leqslant n-4$
                        
                     , then one can choose 
                        
                           
                           $i=1$
                        
                     , 
                        
                           
                           $j=s$
                        
                      
                     
                        
                           
                           $k=2$
                        
                      and 
                        
                           
                           $u=3$
                        
                      to establish statement (ii). Similarly, statement (ii) follows if 
                        
                           
                           $\text{rank}({\it\xi}_{2},{\it\xi}_{s})=2$
                        
                      for some 
                        
                           
                           $s$
                        
                      with 
                        
                           
                           $4\leqslant s\leqslant n-4$
                        
                     . Thus it remains to consider the case 
                        
                           
                           $\text{rank}({\it\xi}_{1},{\it\xi}_{s})=\text{rank}({\it\xi}_{2},{\it\xi}_{s})=1$
                        
                      for 
                        
                           
                           $4\leqslant s\leqslant n-4$
                        
                     . However, it follows from 
                        
                           
                           $\text{rank}({\it\xi}_{1},{\it\xi}_{2})=\text{rank}({\it\xi}_{1},{\it\xi}_{2},{\it\xi}_{s})=2$
                        
                      that 
                        
                           
                           ${\it\xi}_{s}=0$
                        
                     , and this is contradictory to the condition 
                        
                           
                           $\text{rank}(A)\geqslant 9$
                        
                     . We complete the proof of Lemma 5.12.◻
Proof of Lemma 5.4.
We deduce from Lemma 5.11 that
                           $$\begin{eqnarray}\displaystyle S({\it\alpha}) & = & \displaystyle \mathop{\sum }_{\substack{ \mathbf{x}\in \mathbb{N}^{3} \\ 1\leqslant \mathbf{x}\leqslant X}}\mathop{\sum }_{\substack{ 1\leqslant y\leqslant X}}\mathop{\sum }_{\substack{ \mathbf{z}\in \mathbb{N}^{n-4} \\ 1\leqslant \mathbf{z}\leqslant X}}\nonumber\\ \displaystyle & & \displaystyle \times \,e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+2\mathbf{x}^{T}({\it\gamma}_{2},{\it\gamma}_{3})C\mathbf{z}+\mathbf{z}^{T}D\mathbf{z}+\mathbf{z}^{T}C^{T}HC\mathbf{z}))\nonumber\\ \displaystyle & & \displaystyle \times \,e({\it\alpha}(2\mathbf{x}^{T}{\it\gamma}_{1}y+ay^{2}+2\mathbf{z}^{T}{\it\upsilon}y)){\rm\Lambda}(\mathbf{x}){\rm\Lambda}(\mathbf{y}){\rm\Lambda}(\mathbf{z}).\nonumber\end{eqnarray}$$
                        
                      We introduce new variables 
                        
                           
                           $w\in \mathbb{Z}$
                        
                      and 
                        
                           
                           $\mathbf{h}\in \mathbb{Z}^{2}$
                        
                      to replace 
                        
                           
                           $2\mathbf{x}^{T}{\it\gamma}_{1}+ay+2\mathbf{z}^{T}{\it\upsilon}^{T}$
                        
                      and 
                        
                           
                           $C\mathbf{z}$
                        
                     , respectively. Therefore, we have 
                           $$\begin{eqnarray}\displaystyle S({\it\alpha}) & = & \displaystyle \int _{[0,1]^{3}}\mathop{\sum }_{\substack{ \mathbf{h}\in \mathbb{Z}^{2} \\ |\mathbf{h}|\ll X}}\mathop{\sum }_{\substack{ |w|\ll X}}\mathop{\sum }_{\substack{ \mathbf{x}\in \mathbb{N}^{3} \\ 1\leqslant \mathbf{x}\leqslant X}}\mathop{\sum }_{1\leqslant y\leqslant X}\mathop{\sum }_{\substack{ \mathbf{z}\in \mathbb{N}^{n-4} \\ 1\leqslant \mathbf{z}\leqslant X}}{\rm\Lambda}(\mathbf{x}){\rm\Lambda}(\mathbf{y}){\rm\Lambda}(\mathbf{z})\nonumber\\ \displaystyle & & \displaystyle \times \,e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+2\mathbf{x}^{T}({\it\gamma}_{2},{\it\gamma}_{3})\mathbf{h}+\mathbf{z}^{T}D\mathbf{z}+\mathbf{h}^{T}H\mathbf{h}+wy))\nonumber\\ \displaystyle & & \displaystyle \times \,e((2\mathbf{x}^{T}{\it\gamma}_{1}+ay+2\mathbf{z}^{T}{\it\upsilon}-w){\it\beta}_{1})\nonumber\\ \displaystyle & & \displaystyle \times \,e((C\mathbf{z}-\mathbf{h})^{T}{\bf\beta}^{\prime })\,d{\bf\beta},\nonumber\end{eqnarray}$$
                        
                      where 
                        
                           
                           ${\bf\beta}=({\it\beta}_{1},{\it\beta}_{2},{\it\beta}_{3})^{T}$
                        
                     , 
                        
                           
                           ${\bf\beta}^{\prime }=({\it\beta}_{2},{\it\beta}_{3})^{T}$
                        
                      and 
                        
                           
                           $d{\bf\beta}=d{\it\beta}_{1}\,d{\it\beta}_{2}\,d{\it\beta}_{3}$
                        
                     . Now we introduce 
                           $$\begin{eqnarray}\displaystyle {\mathcal{F}}({\it\alpha},{\bf\beta}) & = & \displaystyle \mathop{\sum }_{\substack{ \mathbf{h}\in \mathbb{Z}^{2} \\ |\mathbf{h}|\ll X}}\mathop{\sum }_{\substack{ \mathbf{x}\in \mathbb{N}^{3} \\ 1\leqslant \mathbf{x}\leqslant X}}e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+2\mathbf{x}^{T}({\it\gamma}_{2},{\it\gamma}_{3})\mathbf{h}+\mathbf{h}^{T}H\mathbf{h}))\nonumber\\ \displaystyle & & \displaystyle \times \,e(2\mathbf{x}^{T}{\it\gamma}_{1}{\it\beta}_{1}-\mathbf{h}^{T}{\bf\beta}^{\prime }){\rm\Lambda}(\mathbf{x}),\nonumber\end{eqnarray}$$
                        
                     and
On recalling notations in (5.27), we define
Then we obtain from above
One can deduce from Lemmas 5.6 and 5.7 that
                           $$\begin{eqnarray}\displaystyle & & \displaystyle \int _{[0,1]^{4}}|{\mathcal{H}}({\it\alpha},{\bf\beta})f_{i}({\it\alpha},{\bf\beta})f_{j}({\it\alpha},{\bf\beta})f_{k}({\it\alpha},{\bf\beta})|^{2}\,d{\bf\beta}\,d{\it\alpha}\nonumber\\ \displaystyle & & \displaystyle \quad \ll L^{8}\mathop{\sum }_{\substack{ |w|,|w^{\prime }|,|y|,|y^{\prime }|,|z_{i}|,|z_{i}^{\prime }|,|z_{j}|,|z_{j}^{\prime }|,|z_{k}|,|z_{k}^{\prime }|\ll X \\ wy^{\prime }+yw^{\prime }+2(d_{i}z_{i}z_{i}^{\prime }+d_{j}z_{j}z_{j}^{\prime }+d_{k}z_{k}z_{k}^{\prime })=0 \\ ay-w+2(v_{i}z_{i}+v_{j}z_{j}+v_{k}z_{k})=0 \\ z_{i}{\it\xi}_{i}+z_{j}{\it\xi}_{j}+z_{k}{\it\xi}_{k}=0}}1.\nonumber\end{eqnarray}$$
                        
                      If 
                        
                           
                           $\text{rank}(R_{i,j,k})=3$
                        
                     , then we can represent 
                        
                           
                           $z_{i},z_{j}$
                        
                      and 
                        
                           
                           $z_{k}$
                        
                      by linear functions of 
                        
                           
                           $y$
                        
                      and 
                        
                           
                           $w$
                        
                     . Then by Lemma 5.8, 
 If 
                        
                           
                           $\text{rank}({\it\xi}_{i},{\it\xi}_{j})=2$
                        
                     , then we can represent 
                        
                           
                           $z_{i},z_{j}$
                        
                      and 
                        
                           
                           $w$
                        
                      by linear functions of 
                        
                           
                           $y$
                        
                      and 
                        
                           
                           $z_{k}$
                        
                     . Then we obtain by Lemma 5.8 again 
 provided that 
                        
                           
                           $d_{k}\not =0$
                        
                     . By Lemmas 5.6–5.7, we can obtain 
                           $$\begin{eqnarray}\displaystyle \int _{[0,1]^{4}}|{\mathcal{F}}({\it\alpha},{\bf\beta})|^{2}\,d{\bf\beta}\,d{\it\alpha} & \ll & \displaystyle L^{6}\mathop{\sum }_{\substack{ |\mathbf{x}|,|\mathbf{x}^{\prime }|,|\mathbf{h}|,|\mathbf{h}^{\prime }|\ll X \\ \mathbf{x}^{T}A_{1}\mathbf{x}^{\prime }+\mathbf{x}^{T}({\it\gamma}_{2},{\it\gamma}_{3})\mathbf{h}^{\prime }+{\mathbf{x}^{\prime }}^{T}({\it\gamma}_{2},{\it\gamma}_{3})\mathbf{h}+\mathbf{h}^{T}H\mathbf{h}^{\prime }=0 \\ \mathbf{x}^{T}{\it\gamma}_{1}=0 \\ \mathbf{h}^{T}=0}}1\nonumber\\ \displaystyle & = & \displaystyle L^{6}\mathop{\sum }_{\substack{ |\mathbf{x}|,|\mathbf{x}^{\prime }|,|\mathbf{h}^{\prime }|\ll X \\ \mathbf{x}^{T}A_{1}\mathbf{x}^{\prime }+\mathbf{x}^{T}({\it\gamma}_{2},{\it\gamma}_{3})\mathbf{h}^{\prime }=0 \\ \mathbf{x}^{T}{\it\gamma}_{1}=0}}1.\nonumber\end{eqnarray}$$
                        
                     Then we deduce that
                           $$\begin{eqnarray}\displaystyle \int _{[0,1]^{4}}|{\mathcal{F}}({\it\alpha},{\bf\beta})|^{2}\,d{\bf\beta}\,d{\it\alpha} & \ll & \displaystyle L^{6}\mathop{\sum }_{\substack{ |\mathbf{x}|,|\mathbf{x}^{\prime }|,|\mathbf{h}^{\prime }|,|\mathbf{h}|\ll X \\ \mathbf{x}^{T}A_{1}\mathbf{x}^{\prime }+\mathbf{h}^{T}\mathbf{h}^{\prime }=0 \\ \mathbf{x}^{T}({\it\gamma}_{1},{\it\gamma}_{2},{\it\gamma}_{3})=(0,\mathbf{h}^{T})}}1\nonumber\\ \displaystyle & \ll & \displaystyle L^{6}\mathop{\sum }_{\substack{ |\mathbf{x}^{\prime }|,|\mathbf{h}^{\prime }|,|\mathbf{h}|\ll X \\ (0,\mathbf{h}^{T})({\it\gamma}_{1},{\it\gamma}_{2},{\it\gamma}_{3})^{-1}A_{1}\mathbf{x}^{\prime }+\mathbf{h}^{T}\mathbf{h}^{\prime }=0}}1.\nonumber\end{eqnarray}$$
                        
                     On invoking Lemma 5.8, we arrive at
 If 
                        
                           
                           $1\leqslant i,j,k\leqslant n-4$
                        
                      are pairwise distinct, then one has by (5.29) and the Cauchy–Schwarz inequality
                           $$\begin{eqnarray}\displaystyle \int _{\mathfrak{m}}|S({\it\alpha})|\,d{\it\alpha} & {\leqslant} & \displaystyle \sup _{\substack{ {\it\alpha}\in \mathfrak{m} \\ {\bf\beta}\in [0,1]^{3}}}\bigg|\mathop{\prod }_{u\not =i,j,k}f_{u}({\it\alpha},{\bf\beta})\bigg|\,\bigg(\int _{[0,1]^{4}}|{\mathcal{F}}({\it\alpha},{\bf\beta})|^{2}\,d{\bf\beta}\,d{\it\alpha}\bigg)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \times \,\bigg(\int _{[0,1]^{4}}|{\mathcal{H}}({\it\alpha},{\bf\beta})f_{i}({\it\alpha},{\bf\beta})f_{j}({\it\alpha},{\bf\beta})f_{k}({\it\alpha},{\bf\beta})|^{2}\,d{\bf\beta}\,d{\it\alpha}\bigg)^{1/2}.\nonumber\end{eqnarray}$$
                        
                     Now it follows from above together with Lemmas 4.3 and 5.12 that
We complete the proof of Lemma 5.4.
5.4 Proof of Lemma 5.5
Similar to Lemmas 5.9–5.11, we also have the following result.
Lemma 5.13. If 
                        
                           
                           $\text{rank}(B_{1})=\text{rank}(B_{2})=\text{rank}(B_{3})=3$
                        
                     , then we can write 
                        
                           
                           $A$
                        
                      in the form 
 where 
                        
                           
                           $C\in M_{3,n-3}(\mathbb{Z})$
                        
                     , 
                        
                           
                           ${\it\gamma}_{1},{\it\gamma}_{2},{\it\gamma}_{3}\in \mathbb{Q}^{3}$
                        
                     , 
                        
                           
                           $H\in M_{3,3}(\mathbb{Q})$
                        
                      and 
                        
                           
                           $D=\text{diag}\{d_{1},\ldots ,d_{n-3}\}\in M_{n-3,n-3}(\mathbb{Q})$
                        
                      is a diagonal matrix. Furthermore, we have 
                        
                           
                           $({\it\gamma}_{1},{\it\gamma}_{2},{\it\gamma}_{3})\in GL_{3}(\mathbb{Q})$
                        
                     .
Lemma 5.14. Let 
                        
                           
                           $A$
                        
                      be given by (5.30) satisfying the conditions in Lemma 5.13. We write 
 Then we can find pairwise distinct 
                        
                           
                           $u_{j}(1\leqslant j\leqslant 6)$
                        
                      with 
                        
                           
                           $1\leqslant u_{1},u_{2},u_{3},u_{4},u_{5},u_{6}\leqslant n-3$
                        
                      so that 
                        
                           
                           $\text{rank}({\it\xi}_{u_{1}},{\it\xi}_{u_{2}},{\it\xi}_{u_{3}})=3$
                        
                      and 
                        
                           
                           $d_{u_{4}}d_{u_{5}}d_{u_{6}}\not =0$
                        
                     .
Proof. It follows from 
                        
                           
                           $\text{rank}(A)\geqslant 9$
                        
                      that 
                        
                           
                           $\text{rank}(D)\geqslant 3$
                        
                     . If 
                        
                           
                           $\text{rank}(D)=3$
                        
                     , then we may assume that 
                        
                           
                           $d_{1}d_{2}d_{3}\not =0$
                        
                      and 
                        
                           
                           $d_{j}=0$
                        
                      for 
                        
                           
                           $j\geqslant 4$
                        
                     . Thus 
                        
                           
                           $\text{rank}({\it\xi}_{4},\ldots ,{\it\xi}_{n-3})=3$
                        
                     , and the desired conclusion follows. Next we assume 
                        
                           
                           $\text{rank}(D)\geqslant 4$
                        
                     . Since 
                        
                           
                           $\text{rank}({\it\xi}_{1},{\it\xi}_{2},{\it\xi}_{3})=3$
                        
                     , the desired conclusion follows again if there are distinct 
                        
                           
                           $k_{1},k_{2}$
                        
                      and 
                        
                           
                           $k_{3}$
                        
                      such that 
                        
                           
                           $d_{k_{1}}d_{k_{2}}d_{k_{3}}\not =0$
                        
                      and 
                        
                           
                           $k_{1},k_{2},k_{3}\geqslant 4$
                        
                     . Thus we now assume that for any distinct 
                        
                           
                           $k_{1},k_{2},k_{3}\geqslant 4$
                        
                     , one has 
                        
                           
                           $d_{k_{1}}d_{k_{2}}d_{k_{3}}=0$
                        
                     . This yields 
                        
                           
                           $\text{rank}(D)\leqslant 5$
                        
                     . We first consider the case 
                        
                           
                           $\text{rank}(D)=4$
                        
                     . There are at least two distinct 
                        
                           
                           $j_{1},j_{2}\leqslant 3$
                        
                      such that 
                        
                           
                           $d_{j_{1}}d_{j_{2}}\not =0$
                        
                     . Suppose that 
                        
                           
                           $d_{s_{i}}=0$
                        
                      for 
                        
                           
                           $1\leqslant i\leqslant n-7$
                        
                     . Then the rank of 
                        
                           
                           $\{{\it\xi}_{s_{i}}\}_{1\leqslant i\leqslant n-7}$
                        
                      is at least 2, say 
                        
                           
                           $\text{rank}({\it\xi}_{s_{1}},{\it\xi}_{s_{2}})=2$
                        
                     . Since 
                        
                           
                           $\text{rank}({\it\xi}_{1},{\it\xi}_{2},{\it\xi}_{3})=3$
                        
                     , we can find 
                        
                           
                           $j$
                        
                      with 
                        
                           
                           $1\leqslant j\leqslant 3$
                        
                      such that 
                        
                           
                           $\text{rank}({\it\xi}_{j},{\it\xi}_{s_{1}},{\it\xi}_{s_{2}})=3$
                        
                     . The desired conclusion follows easily by choosing 
                        
                           
                           $u_{1}=j$
                        
                     , 
                        
                           
                           $u_{2}=s_{1}$
                        
                      and 
                        
                           
                           $u_{3}=s_{2}$
                        
                     . Now we consider the case 
                        
                           
                           $\text{rank}(D)=5$
                        
                     , and we may assume that 
                        
                           
                           $d_{1}d_{2}d_{3}d_{4}d_{5}\not =0$
                        
                      and 
                        
                           
                           $d_{r}=0$
                        
                      for 
                        
                           
                           $r\geqslant 6$
                        
                     . Since 
                        
                           
                           $\text{rank}(A)\geqslant 9$
                        
                     , there exist 
                        
                           
                           $r\geqslant 6$
                        
                      (say 
                        
                           
                           $r=6$
                        
                     ) such that 
                        
                           
                           ${\it\xi}_{r}\not =0$
                        
                     . Then one can choose 
                        
                           
                           $j_{1},j_{2}\leqslant 3$
                        
                      so that 
                        
                           
                           $\text{rank}({\it\xi}_{j_{1}},{\it\xi}_{j_{2}},{\it\xi}_{6})=3$
                        
                     . The desired conclusion follows by choosing 
                        
                           
                           $u_{1}=j_{1}$
                        
                     , 
                        
                           
                           $u_{2}=j_{2}$
                        
                      and 
                        
                           
                           $u_{3}=6$
                        
                     . The proof of Lemma 5.14 is completed.◻
Proof of Lemma 5.5.
We apply Lemma 5.13 to conclude that
                           $$\begin{eqnarray}\displaystyle S({\it\alpha}) & = & \displaystyle \mathop{\sum }_{\substack{ \mathbf{x}\in \mathbb{N}^{3} \\ 1\leqslant \mathbf{x}\leqslant X}}\mathop{\sum }_{\substack{ \mathbf{y}\in \mathbb{N}^{n-3} \\ 1\leqslant \mathbf{y}\leqslant X}}{\rm\Lambda}(\mathbf{x}){\rm\Lambda}(\mathbf{y})e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+\mathbf{y}^{T}D\mathbf{y}))\nonumber\\ \displaystyle & & \displaystyle \times \,e({\it\alpha}(2\mathbf{x}^{T}({\it\gamma}_{1},{\it\gamma}_{2},{\it\gamma}_{3})C\mathbf{y}+\mathbf{y}^{T}C^{T}HC\mathbf{y})).\nonumber\end{eqnarray}$$
                        
                     By orthogonality, one has
                           $$\begin{eqnarray}\displaystyle S({\it\alpha}) & = & \displaystyle \int _{[0,1]^{3}}\mathop{\sum }_{\substack{ \mathbf{x}\in \mathbb{N}^{3} \\ 1\leqslant \mathbf{x}\leqslant X}}\mathop{\sum }_{\substack{ \mathbf{y}\in \mathbb{N}^{n-3} \\ 1\leqslant \mathbf{y}\leqslant X}}\mathop{\sum }_{\substack{ \mathbf{z}\in \mathbb{Z}^{3} \\ |\mathbf{z}|\ll X}}{\rm\Lambda}(\mathbf{x}){\rm\Lambda}(\mathbf{y})e({\it\alpha}(\mathbf{x}^{T}A_{1}\mathbf{x}+\mathbf{y}^{T}D\mathbf{y}))\nonumber\\ \displaystyle & & \displaystyle \times \,e({\it\alpha}(2\mathbf{x}^{T}({\it\gamma}_{1},{\it\gamma}_{2},{\it\gamma}_{3})\mathbf{z}+\mathbf{z}^{T}H\mathbf{z}))\nonumber\\ \displaystyle & & \displaystyle \times \,e((\mathbf{y}^{T}C^{T}-\mathbf{z}^{T}){\bf\beta})\,d{\bf\beta},\nonumber\end{eqnarray}$$
                        
                      where 
                        
                           
                           ${\bf\beta}=({\it\beta}_{1},{\it\beta}_{2},{\it\beta}_{3})^{T}$
                        
                      and 
                        
                           
                           $d{\bf\beta}=d{\it\beta}_{1}\,d{\it\beta}_{2}\,d{\it\beta}_{3}$
                        
                     . Now we introduce 
and
 where 
                        
                           
                           ${\it\xi}_{1},\ldots ,{\it\xi}_{n-3}$
                        
                      is given by (5.31). We conclude from above 
One applying Lemmas 5.6–5.8, we can easily establish
 provided that 
                        
                           
                           $\text{rank}({\it\xi}_{u_{1}},{\it\xi}_{u_{2}},{\it\xi}_{u_{3}})=3$
                        
                      and 
                        
                           
                           $d_{u_{4}}d_{u_{5}}\not =0$
                        
                     . Similarly, we also have 
 By (5.32) and the Cauchy–Schwarz inequality, one has for distinct 
                        
                           
                           $u_{1},u_{2},u_{3},u_{4}$
                        
                      and 
                        
                           
                           $u_{5}$
                        
                      that 
                           $$\begin{eqnarray}\displaystyle \int _{\mathfrak{m}}|S({\it\alpha})|\,d{\it\alpha} & {\leqslant} & \displaystyle \sup _{\substack{ {\it\alpha}\in \mathfrak{m} \\ {\bf\beta}\in [0,1]^{3}}}\bigg|\mathop{\prod }_{k\not =u_{1},u_{2},u_{3},u_{4},u_{5}}f_{k}({\it\alpha},{\bf\beta})\bigg|\nonumber\\ \displaystyle & & \displaystyle \times \,\bigg(\int _{[0,1]^{4}}|{\mathcal{F}}({\it\alpha},{\bf\beta})|^{2}\,d{\bf\beta}\,d{\it\alpha}\bigg)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \times \,\bigg(\int _{[0,1]^{4}}\bigg|\mathop{\prod }_{i=1}^{5}f_{u_{i}}({\it\alpha},{\bf\beta})\bigg|^{2}\,d{\bf\beta}\,d{\it\alpha}\bigg)^{1/2}.\end{eqnarray}$$
                        
                     Combining (5.33)–(5.35), Lemma 4.3 and Lemma 5.14, one has
The proof of Lemma 5.5 is finished.
6 Quadratic forms with off-diagonal rank 
               
                  
                  ${\geqslant}4$
               
            
         
         
Proposition 6.1. Let 
                     
                        
                        $A$
                     
                   be defined in (1.1), and let 
                     
                        
                        $S({\it\alpha})$
                     
                   be defined in (2.5). We write 
                        $$\begin{eqnarray}G=\left(\begin{array}{@{}ccc@{}}a_{1,5} & \cdots \, & a_{1,9}\\ \vdots & \cdots \, & \vdots \\ a_{5,5} & \cdots \, & a_{5,9}\end{array}\right).\end{eqnarray}$$
                     
                   Suppose that 
                     
                        
                        $\det (G)\not =0$
                     
                  . Then we have 
 where the implied constant depends on 
                     
                        
                        $A$
                     
                   and 
                     
                        
                        $K$
                     
                  .
 Throughout this section, we shall assume that the matrix 
               
                  
                  $G$
               
             given by (6.1) is invertible.
Lemma 6.2. Let 
                     
                        
                        ${\it\tau}\not =0$
                     
                   be a real number. Then we have 
 where the implied constant depends on 
                     
                        
                        ${\it\tau}$
                     
                  .
Proof. Without loss of generality, we assume that 
                     
                        
                        $0<|{\it\tau}|\leqslant 1$
                     
                  . Thus 
                     
                        
                        $|{\it\tau}({\it\alpha}-{\it\beta})|\leqslant 1$
                     
                  . We introduce 
                        $$\begin{eqnarray}{\mathcal{M}}=\mathop{\bigcup }_{1\leqslant q\leqslant Q^{1/2}}\mathop{\bigcup }_{\substack{ -q\leqslant a\leqslant q \\ (a,q)=1}}\biggl\{\big|{\it\alpha}-\frac{a}{q}\big|\leqslant \frac{Q^{1/2}}{qX^{2}}\biggr\}.\end{eqnarray}$$
                     
                   By Dirichlet’s approximation theorem, there exist 
                     
                        
                        $a\in \mathbb{Z}$
                     
                   and 
                     
                        
                        $q\in \mathbb{N}$
                     
                   with 
                     
                        
                        $(a,q)=1$
                     
                  , 
                     
                        
                        $1\leqslant q\leqslant X^{2}Q^{-1/2}$
                     
                   and 
                     
                        
                        $|{\it\tau}({\it\alpha}-{\it\beta})-a/q|\leqslant Q^{1/2}(qX^{2})^{-1}$
                     
                  . Since 
                     
                        
                        $|{\it\tau}({\it\alpha}-{\it\beta})|\leqslant 1$
                     
                  , one has 
                     
                        
                        $-q\leqslant a\leqslant q$
                     
                  . If 
                     
                        
                        ${\it\tau}({\it\alpha}-{\it\beta})\not \in {\mathcal{M}}$
                     
                  , then 
                     
                        
                        $q>Q^{1/2}$
                     
                  . By Vaughan [Reference Vaughan12, Lemma 2.2], 
Therefore, we obtain
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \int _{\mathfrak{m}(Q)}\int _{\substack{ \mathfrak{m}(Q) \\ {\it\tau}({\it\alpha}-{\it\beta})\not \in {\mathcal{M}}}}\mathop{\sum }_{|x|\ll X}\min \{X,~\Vert x{\it\tau}({\it\alpha}-{\it\beta})\Vert ^{-1}\}\,d{\it\alpha}d{\it\beta}\nonumber\\ \displaystyle & & \displaystyle \quad \ll LQ^{-1/2}X^{2}\int _{\mathfrak{m}(Q)}\int _{\mathfrak{m}(Q)}\,d{\it\alpha}\,d{\it\beta}\ll LQ^{7/2}X^{-2}.\nonumber\end{eqnarray}$$
                     
                   When 
                     
                        
                        ${\it\tau}({\it\alpha}-{\it\beta})\in {\mathcal{M}}$
                     
                  , we apply the trivial bound to the summation over 
                     
                        
                        $x$
                     
                   to deduce that 
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \int _{\mathfrak{m}(Q)}\int _{\substack{ \mathfrak{m}(Q) \\ {\it\tau}({\it\alpha}-{\it\beta})\in {\mathcal{M}}}}\mathop{\sum }_{|x|\ll X}\min \{X,~\Vert x{\it\tau}({\it\alpha}-{\it\beta})\Vert ^{-1}\}\,d{\it\alpha}\,d{\it\beta}\nonumber\\ \displaystyle & & \displaystyle \quad \ll X^{2}\int _{\mathfrak{m}(Q)}\int _{\substack{ \mathfrak{m}(Q) \\ {\it\tau}({\it\alpha}-{\it\beta})\in {\mathcal{M}}}}\,d{\it\alpha}\,d{\it\beta}\ll X^{2}(Q^{2}X^{-2}QX^{-2})=Q^{3}X^{-2}.\nonumber\end{eqnarray}$$
                     
                  The desired conclusion follows from above immediately. ◻
To introduce the next lemma, we define
 For 
               
                  
                  $\mathbf{v}=(v_{1},\ldots ,v_{5})\in \mathbb{Z}^{5}$
               
             and 
               
                  
                  $G$
               
             given by (6.1), we write 
                  $$\begin{eqnarray}2G\mathbf{v}=\left(\begin{array}{@{}c@{}}g_{1}(\mathbf{v})\\ \vdots \\ g_{5}(\mathbf{v})\end{array}\right).\end{eqnarray}$$
               
            
Lemma 6.3. One has
where
                        $$\begin{eqnarray}J_{{\it\gamma}}({\it\alpha})=\mathop{\sum }_{|\mathbf{v}|\leqslant X}\bigg|\mathop{\sum }_{|z|\leqslant X}{\rm\Lambda}(z){\rm\Lambda}(z+v_{1})e({\it\alpha}zg_{5}(\mathbf{v}))e({\it\gamma}z)\bigg|\mathop{\prod }_{j=1}^{4}{\rm\Phi}(g_{j}(\mathbf{v}){\it\alpha}).\end{eqnarray}$$
                     
                  
Proof. Let
                        $$\begin{eqnarray}\displaystyle r(\mathbf{y}) & = & \displaystyle \mathop{\sum }_{i=1}^{4}\mathop{\sum }_{j=1}^{4}a_{i,j}y_{i}y_{j},\quad q(\mathbf{z})=\mathop{\sum }_{i=5}^{9}\mathop{\sum }_{j=5}^{9}a_{i,j}z_{i}z_{j}\quad \text{and}\quad \nonumber\\ \displaystyle p(\mathbf{w}) & = & \displaystyle \mathop{\sum }_{i=10}^{n}\mathop{\sum }_{j=10}^{n}a_{i,j}w_{i}w_{j}.\nonumber\end{eqnarray}$$
                     
                  We set
 Then 
                     
                        
                        $f$
                     
                   can be written in the form 
 where 
                     
                        
                        $\mathbf{z}=(z_{1},\ldots ,z_{5})$
                     
                  , 
                     
                        
                        $\mathbf{y}=(y_{1},\ldots ,y_{4})$
                     
                  , 
                     
                        
                        $\mathbf{w}=(w_{1},\ldots ,w_{n-9})$
                     
                  . Note that 
                     
                        
                        $\mathbf{y}^{T}B\mathbf{w}+\mathbf{z}^{T}C\mathbf{w}+p(\mathbf{w})$
                     
                   vanishes if 
                     
                        
                        $n=9$
                     
                  . Therefore, one has 
                        $$\begin{eqnarray}\displaystyle S({\it\alpha}) & = & \displaystyle \mathop{\sum }_{\substack{ 1\leqslant \mathbf{y}\leqslant X \\ 1\leqslant \mathbf{w}\leqslant X}}\mathop{\sum }_{1\leqslant \mathbf{z}\leqslant X}{\rm\Lambda}(\mathbf{z})e({\it\alpha}(y_{1}g_{1}(\mathbf{z})+\cdots +y_{4}g_{4}(\mathbf{z})+q(\mathbf{z})+\mathbf{z}^{T}C\mathbf{w}))\nonumber\\ \displaystyle & & \displaystyle \times \,{\rm\Lambda}(\mathbf{y}){\rm\Lambda}(\mathbf{w})e({\it\alpha}(r(\mathbf{y})+\mathbf{y}^{T}B\mathbf{w}+p(\mathbf{w}))).\nonumber\end{eqnarray}$$
                     
                  By Cauchy’s inequality,
where
                        $$\begin{eqnarray}T({\it\alpha})=\mathop{\sum }_{\substack{ 1\leqslant \mathbf{y}\leqslant X \\ 1\leqslant \mathbf{w}\leqslant X}}\bigg|\mathop{\sum }_{1\leqslant \mathbf{z}\leqslant X}{\rm\Lambda}(\mathbf{z})e\bigg({\it\alpha}\bigg(\mathop{\sum }_{j=1}^{4}y_{j}g_{j}(\mathbf{z})+q(\mathbf{z})+\mathbf{z}^{T}C\mathbf{w}\bigg)\bigg)\bigg|^{2}.\end{eqnarray}$$
                     
                  Then we deduce that
                        $$\begin{eqnarray}\displaystyle T({\it\alpha}) & = & \displaystyle \mathop{\sum }_{\substack{ 1\leqslant \mathbf{y}\leqslant X \\ 1\leqslant \mathbf{w}\leqslant X}}\mathop{\sum }_{1\leqslant \mathbf{z}_{1}\leqslant X}\mathop{\sum }_{1\leqslant \mathbf{z}_{2}\leqslant X}{\rm\Lambda}(\mathbf{z}_{1}){\rm\Lambda}(\mathbf{z}_{2})\nonumber\\ \displaystyle & & \displaystyle \times \,e\bigg({\it\alpha}\bigg(\mathop{\sum }_{j=1}^{4}y_{j}g_{j}(\mathbf{z}_{1}-\mathbf{z}_{2})+q(\mathbf{z}_{1})-q(\mathbf{z}_{2})\bigg)\bigg)e({\it\alpha}(\mathbf{z}_{1}-\mathbf{z}_{2})^{T}C\mathbf{w})\nonumber\\ \displaystyle & = & \displaystyle \mathop{\sum }_{1\leqslant \mathbf{z}_{1}\leqslant X}\mathop{\sum }_{1\leqslant \mathbf{z}_{2}\leqslant X}{\rm\Lambda}(\mathbf{z}_{1}){\rm\Lambda}(\mathbf{z}_{2})\mathop{\sum }_{\substack{ 1\leqslant \mathbf{y}\leqslant X \\ 1\leqslant \mathbf{w}\leqslant X}}\nonumber\\ \displaystyle & & \displaystyle \times \,e\bigg({\it\alpha}\bigg(\mathop{\sum }_{j=1}^{4}y_{j}g_{j}(\mathbf{z}_{1}-\mathbf{z}_{2})+q(\mathbf{z}_{1})-q(\mathbf{z}_{2})\bigg)\bigg)e({\it\alpha}(\mathbf{z}_{1}-\mathbf{z}_{2})^{T}C\mathbf{w}).\nonumber\end{eqnarray}$$
                     
                   By changing variables 
                     
                        
                        $\mathbf{z}_{1}=\mathbf{z}_{2}+\mathbf{v}$
                     
                  , we have 
                        $$\begin{eqnarray}\displaystyle T({\it\alpha}) & = & \displaystyle \mathop{\sum }_{1\leqslant \mathbf{z}\leqslant X}\mathop{\sum }_{\substack{ |\mathbf{v}|\leqslant X \\ 1\leqslant \mathbf{v}+\mathbf{z}\leqslant X}}{\rm\Lambda}(\mathbf{z}){\rm\Lambda}(\mathbf{z}+\mathbf{v})\mathop{\sum }_{\substack{ 1\leqslant \mathbf{y}\leqslant X \\ 1\leqslant \mathbf{w}\leqslant X}}\nonumber\\ \displaystyle & & \displaystyle \times \,e\bigg({\it\alpha}\bigg(\mathop{\sum }_{j=1}^{4}y_{j}g_{j}(\mathbf{v})+q(\mathbf{z}+\mathbf{v})-q(\mathbf{z})\bigg)\bigg)e({\it\alpha}\mathbf{v}^{T}C\mathbf{w}).\nonumber\end{eqnarray}$$
                     
                   We exchange the summation over 
                     
                        
                        $\mathbf{z}$
                     
                   and the summation over 
                     
                        
                        $\mathbf{v}$
                     
                   to obtain 
where
and
                        $$\begin{eqnarray}{\mathcal{K}}_{j,\mathbf{v}}({\it\alpha})=\mathop{\sum }_{\substack{ 1\leqslant z_{j}\leqslant X \\ 1-v_{j}\leqslant z_{j}\leqslant X-v_{j}}}{\rm\Lambda}(z_{j}){\rm\Lambda}(z_{j}+v_{j})e\bigg(2{\it\alpha}z_{j}\mathop{\sum }_{k=1}^{5}a_{j+4,k+4}v_{k}\bigg).\end{eqnarray}$$
                     
                   The range of 
                     
                        
                        $z_{j}$
                     
                   in summation (6.7) depends on 
                     
                        
                        $v_{j}$
                     
                  . We first follow the standard argument (see for example the argument around (15) in [Reference Wooley15]) to remove the dependence on 
                     
                        
                        $v_{j}$
                     
                  . We write 
and
Then we deduce from (6.7)–(6.9) that
On substituting (6.10) into (6.6), we obtain
                        $$\begin{eqnarray}\displaystyle T({\it\alpha}) & = & \displaystyle \mathop{\sum }_{|\mathbf{v}|\leqslant X}R(\mathbf{v})\mathop{\prod }_{j=2}^{5}{\mathcal{K}}_{j,\mathbf{v}}({\it\alpha})\bigg(\mathop{\sum }_{1\leqslant \mathbf{y}\leqslant X}e\bigg({\it\alpha}\mathop{\sum }_{j=1}^{4}y_{j}g_{j}(\mathbf{v})\bigg)\bigg)\nonumber\\ \displaystyle & & \displaystyle \times \,\int _{0}^{1}{\mathcal{K}}_{0,\mathbf{v}}({\it\alpha},{\it\gamma}){\mathcal{G}}_{v_{1}}({\it\gamma})\,d{\it\gamma}\nonumber\\ \displaystyle & = & \displaystyle \int _{0}^{1}\mathop{\sum }_{|\mathbf{v}|\leqslant X}R(\mathbf{v})\mathop{\prod }_{j=2}^{5}{\mathcal{K}}_{j,\mathbf{v}}({\it\alpha})\bigg(\mathop{\sum }_{1\leqslant \mathbf{y}\leqslant X}e\bigg({\it\alpha}\mathop{\sum }_{j=1}^{4}y_{j}g_{j}(\mathbf{v})\bigg)\bigg)\nonumber\\ \displaystyle & & \displaystyle \times \,{\mathcal{K}}_{0,\mathbf{v}}({\it\alpha},{\it\gamma}){\mathcal{G}}_{v_{1}}({\it\gamma})d{\it\gamma}.\nonumber\end{eqnarray}$$
                     
                  Then we conclude that
By putting (6.11) into (6.5), one has
                        $$\begin{eqnarray}|S({\it\alpha})|^{2}\ll X^{2n-10}L^{2n-6}\int _{0}^{1}\mathop{\sum }_{|\mathbf{v}|\leqslant X}|{\mathcal{K}}_{0,\mathbf{v}}({\it\alpha},{\it\gamma})|\mathop{\prod }_{j=1}^{4}{\rm\Phi}(g_{j}(\mathbf{v}){\it\alpha}){\rm\Phi}({\it\gamma})\,d{\it\gamma}.\end{eqnarray}$$
                     
                  Therefore,
The proof is completed. ◻
Lemma 6.4. Let 
                     
                        
                        $J_{{\it\gamma}}({\it\alpha})$
                     
                   be defined in (6.4). Then one has uniformly for 
                     
                        
                        ${\it\gamma}\in [0,1]$
                     
                   that 
Proof. We deduce by changing variables 
                     
                        
                        $\mathbf{h}=2G\mathbf{v}$
                     
                   that 
                        $$\begin{eqnarray}J_{{\it\gamma}}({\it\alpha})=\mathop{\sum }_{\substack{ |\mathbf{h}|\leqslant cX \\ (2G)^{-1}\mathbf{h}\in \mathbb{Z}^{5} \\ |(2G)^{-1}\mathbf{h}|\leqslant X}}\bigg|\mathop{\sum }_{|z|\leqslant X}{\rm\Lambda}(z){\rm\Lambda}(z+\mathop{\sum }_{j=1}^{5}b_{j}h_{j})e({\it\alpha}zh_{5})e({\it\gamma}z)\bigg|\mathop{\prod }_{j=1}^{4}{\rm\Phi}(h_{j}{\it\alpha})\end{eqnarray}$$
                     
                   for some constants 
                     
                        
                        $c,b_{1},\ldots ,b_{5}$
                     
                   depending only on 
                     
                        
                        $G$
                     
                  . We point out that 
                     
                        
                        $b_{1},\ldots ,b_{5}$
                     
                   are rational numbers, and we extend the domain of function 
                     
                        
                        ${\rm\Lambda}(x)$
                     
                   by taking 
                     
                        
                        ${\rm\Lambda}(x)=0$
                     
                   if 
                     
                        
                        $x\in \mathbb{Q}\setminus \mathbb{N}$
                     
                  . Then we have 
                        $$\begin{eqnarray}\displaystyle J_{{\it\gamma}}({\it\alpha}) & {\leqslant} & \displaystyle \mathop{\sum }_{\substack{ |\mathbf{u}|\leqslant cX}}\mathop{\sum }_{|h|\leqslant cX}\bigg|\mathop{\sum }_{|z|\leqslant X}{\rm\Lambda}(z){\rm\Lambda}\bigg(z+\mathop{\sum }_{j=1}^{4}b_{j}u_{j}+b_{5}h\bigg)e({\it\alpha}zh)e({\it\gamma}z)\bigg|\nonumber\\ \displaystyle & & \displaystyle \times \,\mathop{\prod }_{j=1}^{4}{\rm\Phi}(u_{j}{\it\alpha}).\nonumber\end{eqnarray}$$
                     
                   We first handle the easier case 
                     
                        
                        $b_{5}=0$
                     
                  . In this case, we can easily obtain a nontrivial estimate for the summation over 
                     
                        
                        $h$
                     
                  . By Cauchy’s inequality and Lemma 4.1, one has 
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \bigg(\mathop{\sum }_{|h|\leqslant cX}\bigg|\mathop{\sum }_{|z|\leqslant X}{\rm\Lambda}(z){\rm\Lambda}\bigg(z+\mathop{\sum }_{j=1}^{4}b_{j}u_{j}\bigg)e({\it\alpha}zh)e({\it\gamma}z)\bigg|\bigg)^{2}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \,(2cX+1)\mathop{\sum }_{|h|\leqslant cX}\bigg|\mathop{\sum }_{|z|\leqslant X}{\rm\Lambda}(z){\rm\Lambda}\bigg(z+\mathop{\sum }_{j=1}^{4}b_{j}u_{j}\bigg)e({\it\alpha}zh)e({\it\gamma}z)\bigg|^{2}\nonumber\\ \displaystyle & & \displaystyle \quad \ll \,X^{2}L^{4}\mathop{\sum }_{|x|\ll X}\min \{X,\Vert x{\it\alpha}\Vert ^{-1}\}.\nonumber\end{eqnarray}$$
                     
                   For 
                     
                        
                        ${\it\alpha}\in \mathfrak{m}(Q)$
                     
                  , we apply Lemma 4.2 to deduce from above 
 Then for 
                     
                        
                        ${\it\alpha}\in \mathfrak{m}(Q)$
                     
                  , we obtain 
and thereby
 provided that 
                     
                        
                        $b_{5}=0$
                     
                  . From now on, we assume 
                     
                        
                        $b_{5}\not =0$
                     
                  . Then we have 
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \mathop{\sum }_{|h|\leqslant cX}\bigg|\mathop{\sum }_{|z|\leqslant X}{\rm\Lambda}(z){\rm\Lambda}\bigg(z+\mathop{\sum }_{j=1}^{4}b_{j}u_{j}+b_{5}h\bigg)e({\it\alpha}zh)e({\it\gamma}z)\bigg|\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X \\ \frac{1}{b_{5}}(k-\mathop{\sum }_{j=1}^{4}b_{j}u_{j})\in \mathbb{Z} \\ |\frac{1}{b_{5}}(k-\mathop{\sum }_{j=1}^{4}b_{j}u_{j})|\leqslant cX}}\bigg|\mathop{\sum }_{|z|\leqslant X}{\rm\Lambda}(z){\rm\Lambda}(z+k)e\bigg(\frac{{\it\alpha}}{b_{5}}z\bigg(k-\mathop{\sum }_{j=1}^{4}b_{j}u_{j}\bigg)\bigg)e({\it\gamma}z)\bigg|\nonumber\end{eqnarray}$$
                     
                    for some constant 
                     
                        
                        $c^{\prime }$
                     
                   depending only on 
                     
                        
                        $b_{1},\ldots ,b_{5}$
                     
                   and 
                     
                        
                        $c$
                     
                  . Therefore, one has 
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \mathop{\sum }_{|h|\leqslant cX}\bigg|\mathop{\sum }_{|z|\leqslant X}{\rm\Lambda}(z){\rm\Lambda}\bigg(z+\mathop{\sum }_{j=1}^{4}b_{j}u_{j}+b_{5}h\bigg)e({\it\alpha}zh)e({\it\gamma}z)\bigg|\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}\bigg|\mathop{\sum }_{|z|\leqslant X}{\rm\Lambda}(z){\rm\Lambda}(z+k)e\bigg(\frac{{\it\alpha}}{b_{5}}z\bigg(k-\mathop{\sum }_{j=1}^{4}b_{j}u_{j}\bigg)\bigg)e({\it\gamma}z)\bigg|.\nonumber\end{eqnarray}$$
                     
                  We apply Cauchy’s inequality to deduce that
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \mathop{\sum }_{|h|\leqslant cX}\bigg|\mathop{\sum }_{|z|\leqslant X}{\rm\Lambda}(z){\rm\Lambda}\bigg(z+\mathop{\sum }_{j=1}^{4}b_{j}u_{j}+b_{5}h\bigg)e({\it\alpha}zh)e({\it\gamma}z)\bigg|\leqslant (2c^{\prime }X+1)^{1/2}\nonumber\\ \displaystyle & & \displaystyle \quad \times \,\bigg(\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}\bigg|\mathop{\sum }_{|z|\leqslant X}{\rm\Lambda}(z){\rm\Lambda}(z+k)e\bigg(\frac{{\it\alpha}}{b_{5}}z\bigg(k-\mathop{\sum }_{j=1}^{4}b_{j}u_{j}\bigg)\bigg)e({\it\gamma}z)\bigg|^{2}\bigg)^{1/2}.\nonumber\end{eqnarray}$$
                     
                  We apply Cauchy’s inequality again to obtain
 where 
                     
                        
                        ${\rm\Xi}_{{\it\gamma}}({\it\alpha})$
                     
                   is defined as 
                        $$\begin{eqnarray}\displaystyle {\rm\Xi}_{{\it\gamma}}({\it\alpha}) & = & \displaystyle \mathop{\sum }_{\substack{ |\mathbf{u}|\leqslant cX}}\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}\bigg|\mathop{\sum }_{|z|\leqslant X}{\rm\Lambda}(z){\rm\Lambda}(z+k)e\bigg(\frac{{\it\alpha}}{b_{5}}z\bigg(k-\mathop{\sum }_{j=1}^{4}b_{j}u_{j}\bigg)\bigg)e({\it\gamma}z)\bigg|^{2}\nonumber\\ \displaystyle & & \displaystyle \times \,\mathop{\prod }_{j=1}^{4}{\rm\Phi}(u_{j}{\it\alpha}).\nonumber\end{eqnarray}$$
                     
                  By Lemma 4.2,
Therefore, we have
                        $$\begin{eqnarray}\displaystyle \int _{\mathfrak{m}(Q)}J_{{\it\gamma}}({\it\alpha})\,d{\it\alpha} & \ll & \displaystyle L^{2}Q^{-2}X^{9/2}\bigg(\int _{\mathfrak{m}(Q)}\,d{\it\alpha}\bigg)^{1/2}\bigg(\int _{\mathfrak{m}(Q)}{\rm\Xi}_{{\it\gamma}}({\it\alpha})\,d{\it\alpha}\bigg)^{1/2}\nonumber\\ \displaystyle & \ll & \displaystyle L^{2}Q^{-1}X^{7/2}\bigg(\int _{\mathfrak{m}(Q)}{\rm\Xi}_{{\it\gamma}}({\it\alpha})\,d{\it\alpha}\bigg)^{1/2}.\end{eqnarray}$$
                     
                   Now it suffices to estimate 
                     
                        
                        $\int _{\mathfrak{m}(Q)}{\rm\Xi}_{{\it\gamma}}({\it\alpha})\,d{\it\alpha}$
                     
                  . We observe 
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \int _{\mathfrak{m}(Q)}{\rm\Xi}_{{\it\gamma}}({\it\alpha})\,d{\it\alpha}\nonumber\\ \displaystyle & & \displaystyle \quad =\int _{\mathfrak{m}(Q)}\mathop{\sum }_{\substack{ |\mathbf{u}|\leqslant cX}}\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}\mathop{\sum }_{|z_{1}|\leqslant X}\mathop{\sum }_{|z_{2}|\leqslant X}{\it\varpi}(z_{1},z_{2},k)e\bigg(\frac{{\it\alpha}}{b_{5}}(z_{1}-z_{2})k\bigg)\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,{\rm\Pi}({\it\alpha},\mathbf{u},z_{1},z_{2})\,d{\it\alpha}\nonumber\\ \displaystyle & & \displaystyle \quad =\int _{\mathfrak{m}(Q)}\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}\mathop{\sum }_{|z_{1}|\leqslant X}\mathop{\sum }_{|z_{2}|\leqslant X}{\it\varpi}(z_{1},z_{2},k)e\bigg(\frac{{\it\alpha}}{b_{5}}(z_{1}-z_{2})k\bigg)\mathop{\sum }_{\substack{ |\mathbf{u}|\leqslant cX}}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,{\rm\Pi}({\it\alpha},\mathbf{u},z_{1},z_{2})\,d{\it\alpha},\nonumber\end{eqnarray}$$
                     
                  where
and
We exchange the order of summation and integration to conclude that
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \int _{\mathfrak{m}(Q)}{\rm\Xi}_{{\it\gamma}}({\it\alpha})\,d{\it\alpha}\nonumber\\ \displaystyle & & \displaystyle \quad =\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}\mathop{\sum }_{|z_{1}|\leqslant X}\mathop{\sum }_{|z_{2}|\leqslant X}{\it\varpi}(z_{1},z_{2},k)\int _{\mathfrak{m}(Q)}e\bigg(\frac{{\it\alpha}}{b_{5}}(z_{1}-z_{2})k\bigg)\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\mathop{\sum }_{\substack{ |\mathbf{u}|\leqslant cX}}{\rm\Pi}({\it\alpha},\mathbf{u},z_{1},z_{2})\,d{\it\alpha}\nonumber\\ \displaystyle & & \displaystyle \quad \ll L^{4}\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}\mathop{\sum }_{|z_{1}|\leqslant X}\mathop{\sum }_{|z_{2}|\leqslant X}\bigg|\int _{\mathfrak{m}(Q)}e\bigg(\frac{{\it\alpha}}{b_{5}}(z_{1}-z_{2})k\bigg)\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\mathop{\sum }_{\substack{ |\mathbf{u}|\leqslant cX}}{\rm\Pi}({\it\alpha},\mathbf{u},z_{1},z_{2})\,d{\it\alpha}\bigg|\nonumber\\ \displaystyle & & \displaystyle \quad =L^{4}\mathop{\sum }_{|z_{1}|\leqslant X}\mathop{\sum }_{|z_{2}|\leqslant X}\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}\bigg|\int _{\mathfrak{m}(Q)}e\bigg(\frac{{\it\alpha}}{b_{5}}(z_{1}-z_{2})k\bigg)\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\mathop{\sum }_{\substack{ |\mathbf{u}|\leqslant cX}}{\rm\Pi}({\it\alpha},\mathbf{u},z_{1},z_{2})\,d{\it\alpha}\bigg|.\nonumber\end{eqnarray}$$
                     
                  Then the Cauchy–Schwarz inequality implies
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \bigg(\int _{\mathfrak{m}(Q)}{\rm\Xi}_{{\it\gamma}}({\it\alpha})\,d{\it\alpha}\bigg)^{2}\nonumber\\ \displaystyle & & \displaystyle \quad \ll L^{8}X^{3}\mathop{\sum }_{|z_{1}|\leqslant X}\mathop{\sum }_{|z_{2}|\leqslant X}\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}\bigg|\int _{\mathfrak{m}(Q)}e\bigg(\frac{{\it\alpha}}{b_{5}}(z_{1}-z_{2})k\bigg)\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\mathop{\sum }_{\substack{ |\mathbf{u}|\leqslant cX}}{\rm\Pi}({\it\alpha},\mathbf{u},z_{1},z_{2})\,d{\it\alpha}\bigg|^{2}.\end{eqnarray}$$
                     
                  Now we apply the method developed by the author [Reference Zhao16] to deduce that
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \mathop{\sum }_{|z_{1}|\leqslant X}\mathop{\sum }_{|z_{2}|\leqslant X}\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}\bigg|\int _{\mathfrak{m}(Q)}e\bigg(\frac{{\it\alpha}}{b_{5}}(z_{1}-z_{2})k\bigg)\mathop{\sum }_{\substack{ |\mathbf{u}|\leqslant cX}}{\rm\Pi}({\it\alpha},\mathbf{u},z_{1},z_{2})\,d{\it\alpha}\bigg|^{2}\nonumber\\ \displaystyle & & \displaystyle \quad =\int _{\mathfrak{m}(Q)}\int _{\mathfrak{m}(Q)}\mathop{\sum }_{|z_{1}|\leqslant X}\mathop{\sum }_{|z_{2}|\leqslant X}\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}e\bigg(\frac{{\it\alpha}-{\it\beta}}{b_{5}}(z_{1}-z_{2})k\bigg)\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\mathop{\sum }_{\substack{ |\mathbf{u}_{1}|\leqslant cX}}{\rm\Pi}({\it\alpha},\mathbf{u}_{1},z_{1},z_{2})\mathop{\sum }_{\substack{ |\mathbf{u}_{2}|\leqslant cX}}{\rm\Pi}(-{\it\beta},\mathbf{u}_{2},z_{1},z_{2})\,d{\it\alpha}\,d{\it\beta}\nonumber\\ \displaystyle & & \displaystyle \quad \leqslant \int _{\mathfrak{m}(Q)}\int _{\mathfrak{m}(Q)}\mathop{\sum }_{|z_{1}|\leqslant X}\mathop{\sum }_{|z_{2}|\leqslant X}\bigg|\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}e\bigg(\frac{{\it\alpha}-{\it\beta}}{b_{5}}(z_{1}-z_{2})k\bigg)\bigg|\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,\mathop{\sum }_{\substack{ |\mathbf{u}_{1}|\leqslant cX}}\mathop{\prod }_{j=1}^{4}{\rm\Phi}(u_{j}{\it\alpha})\mathop{\sum }_{\substack{ |\mathbf{u}_{2}|\leqslant cX}}\mathop{\prod }_{j=1}^{4}{\rm\Phi}(u_{j}^{\prime }{\it\beta})\,d{\it\alpha}\,d{\it\beta},\nonumber\end{eqnarray}$$
                     
                   where 
                     
                        
                        $\mathbf{u}_{1}=(u_{1},\ldots ,u_{4})^{T}\in \mathbb{Z}^{4}$
                     
                   and 
                     
                        
                        $\mathbf{u}_{2}=(u_{1}^{\prime },\ldots ,u_{4}^{\prime })^{T}\in \mathbb{Z}^{4}$
                     
                  . Therefore, we obtain by Lemma 4.2
                  
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \mathop{\sum }_{|z_{1}|\leqslant X}\mathop{\sum }_{|z_{2}|\leqslant X}\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}\bigg|\int _{\mathfrak{m}(Q)}e\bigg(\frac{{\it\alpha}}{b_{5}}(z_{1}-z_{2})k\bigg)\mathop{\sum }_{\substack{ |\mathbf{u}|\leqslant cX}}{\rm\Pi}({\it\alpha},\mathbf{u},z_{1},z_{2})\,d{\it\alpha}\bigg|^{2}\nonumber\\ \displaystyle & & \displaystyle \quad \ll \int _{\mathfrak{m}(Q)}\int _{\mathfrak{m}(Q)}\mathop{\sum }_{|z_{1}|\leqslant X}\mathop{\sum }_{|z_{2}|\leqslant X}\min \biggl\{X,\biggl\|\frac{{\it\alpha}-{\it\beta}}{b_{5}}(z_{1}-z_{2})\biggr\|^{-1}\biggr\}\nonumber\\ \displaystyle & & \displaystyle \qquad \times \,(L^{4}Q^{-4}X^{8})^{2}\,d{\it\alpha}\,d{\it\beta}\nonumber\\ \displaystyle & & \displaystyle \quad \ll L^{8}Q^{-8}X^{17}\int _{\mathfrak{m}(Q)}\int _{\mathfrak{m}(Q)}\mathop{\sum }_{|x|\leqslant X}\min \biggl\{X,\biggl\|\frac{{\it\alpha}-{\it\beta}}{b_{5}}x\biggr\|^{-1}\biggr\}\,d{\it\alpha}\,d{\it\beta}.\nonumber\end{eqnarray}$$
                     
                  Then we conclude from Lemma 6.2 that
                        $$\begin{eqnarray}\displaystyle & & \displaystyle \mathop{\sum }_{|z_{1}|\leqslant X}\mathop{\sum }_{|z_{2}|\leqslant X}\mathop{\sum }_{\substack{ |k|\leqslant c^{\prime }X}}\bigg|\int _{\mathfrak{m}(Q)}e\bigg(\frac{{\it\alpha}}{b_{5}}(z_{1}-z_{2})k\bigg)\mathop{\sum }_{\substack{ |\mathbf{u}|\leqslant cX}}{\rm\Pi}({\it\alpha},\mathbf{u},z_{1},z_{2})\,d{\it\alpha}\bigg|^{2}\nonumber\\ \displaystyle & & \displaystyle \quad \ll L^{9}Q^{-9/2}X^{15}.\end{eqnarray}$$
                     
                  By substituting (6.16) into (6.13), we obtain
 provided that 
                     
                        
                        $b_{5}\not =0$
                     
                  .
We complete the proof in view of the argument around (6.12) and (6.17).◻
Lemma 6.5. One has
Proof. By Cauchy’s inequality,
                        $$\begin{eqnarray}\displaystyle \int _{\mathfrak{m}(Q)}|S({\it\alpha})|\,d{\it\alpha} & {\leqslant} & \displaystyle \bigg(\int _{\mathfrak{m}(Q)}\,d{\it\alpha}\bigg)^{1/2}\bigg(\int _{\mathfrak{m}(Q)}|S({\it\alpha})|^{2}\,d{\it\alpha}\bigg)^{1/2}\nonumber\\ \displaystyle & \ll & \displaystyle QX^{-1}\bigg(\int _{\mathfrak{m}(Q)}|S({\it\alpha})|^{2}\,d{\it\alpha}\bigg)^{1/2}.\end{eqnarray}$$
                     
                  It follows from Lemmas 6.3–6.4 that
We finish Section 6 by pointing out that Proposition 6.1 follows from Lemma 6.5 by the dyadic argument.
7 The Proof of Theorem 1.1
By orthogonality, we have
 Recalling the definitions of 
               
                  
                  $\mathfrak{M}$
               
             and 
               
                  
                  $\mathfrak{m}$
               
             in (2.8) and (2.9), we have 
In light of Lemma 3.6, to establish the asymptotic formula (1.3), it suffices to prove
In view of Proposition 6.1 and the work of Liu [Reference Liu9] (see also Remark of Lemma 4.4), the estimate (7.2) holds if there exists an invertible matrix
                  $$\begin{eqnarray}B=\left(\begin{array}{@{}ccc@{}}a_{i_{1},j_{1}} & \cdots \, & a_{i_{5},j_{5}}\\ \vdots & \cdots \, & \vdots \\ a_{i_{5},j_{1}} & \cdots \, & a_{i_{5},j_{5}}\end{array}\right)\end{eqnarray}$$
               
            with
 Next we assume 
               
                  
                  $\text{rank}(B)\leqslant 4$
               
             for all 
               
                  
                  $B=(a_{i_{k},j_{l}})_{1\leqslant k,l\leqslant 5}$
               
             satisfying 
               
                  
                  $|\{i_{1},\ldots ,i_{5}\}\cap \{j_{1},\ldots ,j_{5}\}|\leqslant 1$
               
            . This yields 
               
                  
                  $\text{rank}_{\text{off}}(A)\leqslant 4$
               
            . By Proposition 5.1, we can establish (7.2) again if 
               
                  
                  $\text{rank}_{\text{off}}(A)\leqslant 3$
               
            . It remains to consider the case 
               
                  
                  $\text{rank}_{\text{off}}(A)=4$
               
            . Without loss of generality, we assume that 
               
                  
                  $\text{rank}(C)=4$
               
            , where 
                  $$\begin{eqnarray}C=\left(\begin{array}{@{}cccc@{}}a_{1,5} & a_{1,6} & a_{1,7} & a_{1,8}\\ a_{2,5} & a_{2,6} & a_{2,7} & a_{2,8}\\ a_{3,5} & a_{3,6} & a_{3,7} & a_{3,8}\\ a_{4,5} & a_{4,6} & a_{4,7} & a_{4,8}\end{array}\right).\end{eqnarray}$$
               
             Let 
               
                  
                  ${\it\gamma}_{j}=(a_{j,5},\ldots ,a_{j,n})^{T}\in \mathbb{Z}^{n-4}$
               
             for 
               
                  
                  $1\leqslant j\leqslant n$
               
            . Then 
               
                  
                  ${\it\gamma}_{1}$
               
            , 
               
                  
                  ${\it\gamma}_{2}$
               
            , 
               
                  
                  ${\it\gamma}_{3}$
               
             and 
               
                  
                  ${\it\gamma}_{4}$
               
             are linear independent due to 
               
                  
                  $\text{rank}(C)=4$
               
            . For 
               
                  
                  $5\leqslant k\leqslant n$
               
            , we consider 
                  $$\begin{eqnarray}B=\left(\begin{array}{@{}ccc@{}}a_{1,5} & \cdots \, & a_{1,n}\\ \vdots & \cdots \, & \vdots \\ a_{4,5} & \cdots \, & a_{4,n}\\ a_{k,5} & \cdots \, & a_{k,n}\end{array}\right)\in M_{5,n-4}(\mathbb{Z}).\end{eqnarray}$$
               
             According to our assumption, one has 
               
                  
                  $\text{rank}(B)\leqslant 4$
               
            . Then we conclude from above that 
               
                  
                  ${\it\gamma}_{k}$
               
             can be linear represented by 
               
                  
                  ${\it\gamma}_{1}$
               
            , 
               
                  
                  ${\it\gamma}_{2}$
               
            , 
               
                  
                  ${\it\gamma}_{3}$
               
             and 
               
                  
                  ${\it\gamma}_{4}$
               
            . Therefore, one has 
               
                  
                  $\text{rank}(H)=4$
               
            , where 
                  $$\begin{eqnarray}H=\left(\begin{array}{@{}ccc@{}}a_{1,5} & \cdots \, & a_{1,n}\\ \vdots & \cdots \, & \vdots \\ a_{n,5} & \cdots \, & a_{n,n}\end{array}\right)\in M_{n,n-4}(\mathbb{Z}).\end{eqnarray}$$
               
             We obtain 
               
                  
                  $\text{rank}(A)\leqslant \text{rank}(H)+4\leqslant 8$
               
            . This is contradictory to the condition that 
               
                  
                  $\text{rank}(A)\geqslant 9$
               
            . Therefore, we complete the proof of Theorem 1.1.