Hostname: page-component-f554764f5-8cg97 Total loading time: 0 Render date: 2025-04-21T15:34:06.877Z Has data issue: false hasContentIssue false

Properties of magnetic turbulence in GRB afterglows

Published online by Cambridge University Press:  30 October 2024

Evgeny Derishev*
Affiliation:
Institute of Applied Physics, Nizhny Novgorod, Russia

Abstract

We present a model-independent way to characterise properties of the magnetic-field turbulence in the emitting regions of Gamma-Ray Burst afterglows. Our only assumption is that afterglows’ synchrotron radiation is efficient. It turns out that the gyroradius of plasma particles must be smaller (with a good margin) than the correlation length of the magnetic-field fluctuations. Such turbulence is essentially non-linear and therefore must be produced by some kind of magnetohydrodynamical instability, likely acting on top of kinetic Weibel instability. We also find that the emitting particles are loosely confined to local magnetic-field structures and diffusion allows them to sample the entire distribution of local magnetisation values. This means that one-zone approach to modelling the afterglow spectra is still valid despite the non-linear nature of the magnetic turbulence. However, the non-linear turbulence may (and likely will) change the synchrotron spectrum of individual electrons.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Achterberg, A., Gallant, Y. A., Kirk, J. G., & Guthmann, A. W. 2001, MNRAS, 328, 393. https://doi.org/10.1046/j.1365-8711.2001.04851.x. arXiv: astro-ph/0107530 [astro-ph].CrossRefGoogle Scholar
Asano, K., Murase, K., & Toma, K. 2020, ApJ, 905, 105. https://doi.org/10.3847/1538-4357/abc82c. arXiv: 2007.06307 [astro-ph.HE].CrossRefGoogle Scholar
Chang, P., Spitkovsky, A., & Arons, J. 2008, ApJ, 674, 378. https://doi.org/10.1086/524764. arXiv: 0704.3832 [astro-ph].CrossRefGoogle Scholar
Derishev, E. V., Aharonian, F. A., Kocharovsky, V. V., & Kocharovsky, Vl. V. 2003, PhRvD, 68, 043003. https://doi.org/10.1103/PhysRevD.68.043003. arXiv: astro-ph/0301263 [astro-ph].CrossRefGoogle Scholar
Derishev, E. V., & Piran, T. 2016, MNRAS, 460, 2036. https://doi.org/10.1093/mnras/stw1175. arXiv: 1512.04257 [astro-ph.HE].CrossRefGoogle Scholar
Derishev, E., & Piran, T. 2021, ApJ, 923, 135. https://doi.org/10.3847/1538-4357/ac2dec. arXiv: 2106.12035 [astro-ph.HE].CrossRefGoogle Scholar
Garasev, M., & Derishev, E. 2016, MNRAS, 461, 641. https://doi.org/10.1093/mnras/stw1345. arXiv: 1603.08006 [astro-ph.HE].CrossRefGoogle Scholar
Garasev, M. A., & Derishev, E. V. 2021, RQE, 63, 909. https://doi.org/10.1007/s11141-021-10103-w.CrossRefGoogle Scholar
Collaboration, H. E. S. S., et al. 2021, Sci, 372, 1081. https://doi.org/10.1126/science.abe8560. arXiv: 2106.02510 [astro-ph.HE].CrossRefGoogle Scholar
Kelner, S. R., Aharonian, F. A., & Khangulyan, D. 2013, ApJ, 774, 61. https://doi.org/10.1088/0004-637X/774/1/61. arXiv: 1304.0493 [astro-ph.HE].CrossRefGoogle Scholar
Keshet, U., & Waxman, E. 2005, PhRvL, 94, 111102. https://doi.org/10.1103/PhysRevLett.94.111102. arXiv: astro-ph/0408489 [astro-ph].CrossRefGoogle Scholar
MAGIC Collaboration, et al. 2019, Natur, 575, 455. https://doi.org/10.1038/s41586-019-1750-x. arXiv: 2006.07249 [astro-ph.HE].CrossRefGoogle Scholar
Medvedev, M. V., & Loeb, A. 1999, ApJ, 526, 697. https://doi.org/10.1086/308038. arXiv: astro-ph/9904363 [astro-ph].CrossRefGoogle Scholar
Morse, R. L., & Nielson, C. W. 1971, PhF, 14, 830. https://doi.org/10.1063/1.1693518.CrossRefGoogle Scholar
Nakar, E., Ando, S., & Sari, R. 2009, ApJ, 703, 675. https://doi.org/10.1088/0004-637X/703/1/675. arXiv: 0903.2557 [astro-ph.HE].CrossRefGoogle Scholar
Sari, R., & Esin, A. A. 2001, ApJ, 548, 787. https://doi.org/10.1086/319003. arXiv: astro-ph/0005253 [astro-ph].CrossRefGoogle Scholar
Sari, R., Piran, T., & Narayan, R. 1998, ApJ, 497, L17. https://doi.org/10.1086/311269. arXiv: astro-ph/9712005 [astro-ph].CrossRefGoogle Scholar
Sironi, L., Keshet, U., & Lemoine, M. 2015, SSR, 191, 519. https://doi.org/10.1007/s11214-015-0181-8. arXiv: 1506.02034 [astro-ph.HE].CrossRefGoogle Scholar
Uvarov, Yu. A., & Bykov, A. M. 2023, AstL, 49, 591. https://doi.org/10.1134/S1063773723100079.CrossRefGoogle Scholar