Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T18:08:33.614Z Has data issue: false hasContentIssue false

ADDITIVE AND SUBTRACTIVE BASES OF $\mathbb {Z}_m$ IN AVERAGE

Published online by Cambridge University Press:  25 November 2024

GUANGPING LIANG
Affiliation:
School of Mathematical Science, Yangzhou University, Yangzhou 225002, PR China e-mail: 15524259050@163.com
YU ZHANG
Affiliation:
School of Mathematics, Shandong University, Jinan 250100, PR China e-mail: yuzhang0615@mail.sdu.edu.cn
HAODE ZUO*
Affiliation:
School of Mathematical Science, Yangzhou University, Yangzhou 225002, PR China
Rights & Permissions [Opens in a new window]

Abstract

Given a positive integer m, let $\mathbb {Z}_m$ be the set of residue classes mod m. For $A\subseteq \mathbb {Z}_m$ and $n\in \mathbb {Z}_m$, let $\sigma _A(n)$ be the number of solutions to the equation $n=x+y$ with $x,y\in A$. Let $\mathcal {H}_m$ be the set of subsets $A\subseteq \mathbb {Z}_m$ such that $\sigma _A(n)\geq 1$ for all $n\in \mathbb {Z}_m$. Let

$$ \begin{align*} \ell_m=\min\limits_{A\in \mathcal{H}_m}\bigg\lbrace m^{-1}\sum_{n\in \mathbb{Z}_m}\sigma_A(n)\bigg\rbrace. \end{align*} $$

Ding and Zhao [‘A new upper bound on Ruzsa’s numbers on the Erdős–Turán conjecture’, Int. J. Number Theory 20 (2024), 1515–1523] showed that $\limsup _{m\rightarrow \infty }\ell _m\le 192$. We prove

$$ \begin{align*} \limsup\limits_{m\rightarrow\infty}\ell_m\leq 144 \end{align*} $$

and investigate parallel results on subtractive bases of $ \mathbb {Z}_m$.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Let $\mathbb {N}$ be the set of natural numbers and A a subset of $\mathbb {N}$ . A remarkable conjecture of Erdős and Turán [Reference Erdős and Turán6] states that if all sufficiently large numbers n can be written as the sum of two elements of A, then the number of representations of n as the sum of two elements of A cannot be bounded. Progress on this conjecture was made by Grekos et al. [Reference Grekos, Haddad, Helou and Pihko8], who proved that the number of representations cannot be bounded by $5$ , later improved to $7$ by Borwein et al. [Reference Borwein, Choi and Chu1]. For more on the Erdős–Turán conjecture, see the books of Halberstam and Roth [Reference Halberstam and Roth10] and Tao and Vu [Reference Tao and Van Vu17].

A set A is called an asymptotic basis of natural numbers if all sufficiently large numbers n can be written as the sum of two elements of A. Motivated by Erdős’ question, Ruzsa [Reference Ruzsa12] constructed an asymptotic basis A of natural numbers which has a bounded square mean value. Ruzsa also considered a variant on the Erdős–Turán conjecture. Let $\mathbb {Z}_m$ be the set of residue classes mod m and A a subset of $\mathbb {Z}_m$ . For any $n\in \mathbb {Z}_m$ , let

$$ \begin{align*} \sigma_A(n)=\#\{(x,y):n=x+y,~x,y\in \mathbb{Z}_m\}. \end{align*} $$

The Ruzsa number $R_m$ is defined to be the least positive integer r so that there exists a set $A\subseteq \mathbb {Z}_m$ with $ 1\le \sigma _A(n)\le r \mbox { for all } n\in \mathbb {Z}_m. $ In his argument, Ruzsa proved that there is an absolute constant C such that $R_m\le C$ for all positive integers m. Employing Ruzsa’s ideas, Tang and Chen [Reference Tang and Chen15] proved that $R_m\le 768$ for all sufficiently large m. Later, in [Reference Tang and Chen16], they obtained $R_m\le 5120$ for all positive integers m. In [Reference Chen2], Chen proved that $R_m\le 288$ for all positive integers m, and this was recently improved to $R_m\le 192$ by Ding and Zhao [Reference Ding and Zhao5]. However, Sándor and Yang [Reference Sándor and Yang13] showed that $R_m\ge 6$ for all $m\ge 36$ .

Ding and Zhao [Reference Ding and Zhao5] provided an average version of Ruzsa’s number. Precisely, let $\mathcal {H}_m$ be the set of subsets $A\subseteq \mathbb {Z}_m$ such that $\sigma _A(n)\geq 1$ for all $n\in \mathbb {Z}_m$ . Ding and Zhao defined the minimal mean value as

$$ \begin{align*} \ell_m=\min\limits_{A\in \mathcal{H}_m}\bigg\lbrace m^{-1}\sum_{n\in \mathbb{Z}_m}\sigma_A(n)\bigg\rbrace. \end{align*} $$

As they pointed out, their result on $R_m\le 192$ clearly implies

(1.1) $$ \begin{align} \limsup_{m\rightarrow\infty}\ell_m\le 192. \end{align} $$

Ding and Zhao [Reference Ding and Zhao5, Section 3] thought that ‘any improvement of the bound (1.1) would be of interest’. In this note, we shall make some progress on this problem.

Theorem 1.1. We have

$$ \begin{align*} \limsup\limits_{m\rightarrow\infty}\ell_m\leq 144. \end{align*} $$

Parallel to the additive bases of $\mathbb {Z}_m$ , one naturally considers the corresponding results on subtractive bases of $\mathbb {Z}_m$ . Let A be a subset of $\mathbb {Z}_m$ . For any $n\in \mathbb {Z}_m$ , let

$$ \begin{align*} \delta_A(n)=\#\{(x,y):n=x-y,~x,y\in \mathbb{Z}_m\}. \end{align*} $$

In [Reference Chen and Sun3], Chen and Sun proved that for any positive integer m, there exists a subset A of $\mathbb {Z}_m$ so that $\delta _A(n)\ge 1$ for any $n\in \mathbb {Z}_m$ and $\delta _A(n)\le 7$ for all $n\in \mathbb {Z}_m$ with three exceptions. Their result was recently improved by Zhang [Reference Zhang18] who showed that $\delta _A(n)\le 7$ could be refined to $\delta _A(n)\le 5$ , again with three exceptions. The exceptions cannot be removed by their method. Motivated by the minimal mean value defined by Ding and Zhao, we consider a parallel quantity

$$ \begin{align*} g_m:=\min\limits_{A\in \mathcal{K}_m}\bigg\lbrace m^{-1}\sum_{n\in \mathbb{Z}_m}\delta_A(n)\bigg\rbrace, \end{align*} $$

where $\mathcal {K}_m$ is the set of subsets $A\subseteq \mathbb {Z}_m$ such that $\delta _A(n)\geq 1$ for all $n\in \mathbb {Z}_m$ . Obviously, Zhang’s bound implies that

$$ \begin{align*} \limsup\limits_{m\rightarrow\infty}g_m\leq 5 \end{align*} $$

since the total sums of $\delta _A(n)$ for the three exceptions contribute only $O(\sqrt {m})$ . Our second main result gives a small improvement on this bound.

Theorem 1.2. We have

$$ \begin{align*} \limsup\limits_{m\rightarrow\infty}g_m\leq 2. \end{align*} $$

There is an old conjecture known as the prime power conjecture (see, for example, [Reference Evans and Mann7, Reference Guy9, Reference Hall11]) which states that if A is a subset of $\mathbb {Z}_m$ with $\delta _A(n)=1$ for any nonzero $ n\in \mathbb {Z}_m$ , then $m=p^{2\alpha }+p^\alpha +1$ , where $p^\alpha $ is a prime power. The reverse direction was proved by Singer [Reference Singer14] as early as 1938.

As mentioned by Ding and Zhao [Reference Ding and Zhao5], it is clear that $\liminf _{m\rightarrow \infty }\ell _m\ge 2$ from [Reference Sándor and Yang13, Lemma 2.2]. They conjectured that $\liminf _{m\rightarrow \infty }\ell _m\ge 3$ [Reference Ding and Zhao5, Conjecture 3.3]. Based on the results of Singer and Theorem 1.2, it seems reasonable to conjecture that

$$ \begin{align*} \lim\limits_{m\rightarrow\infty}g_m=1. \end{align*} $$

If true, these conjectures reflect rather different features between additive bases and subtractive bases.

2 Proof of Theorem 1.1

For any integer k, let

$$ \begin{align*} Q_k=\{(u,ku^2):u\in \mathbb{Z}_{p}\}\subset \mathbb{Z}_{p}^2. \end{align*} $$

We will make use of the following lemmas.

Lemma 2.1 (Chen [Reference Chen2, Lemma 2]).

Let p be an odd prime and m a quadratic nonresidue of p with $m+1\not \equiv 0 \pmod {p}, 3m+1\not \equiv 0\pmod {p}$ and $m+3\not \equiv 0 \pmod {p}$ . Put

$$ \begin{align*} B=Q_{m+1}\cup Q_{m(m+1)}\cup Q_{2m}. \end{align*} $$

Then, for any $(c,d)\in \mathbb {Z}_{p}^2$ , we have $1\le \sigma _B(c,d)\le 16$ , where $\sigma _B(c,d)$ is the number of solutions of the equation $(c,d)=x+y,~x,y\in B$ .

Lemma 2.2 (Prime number theorem; see, for example, [Reference Davenport4]).

Let $\pi (x)$ be the number of primes p not exceeding x. Then,

$$ \begin{align*} \pi(x)\sim x/\!\log x \quad \text{as~} x\rightarrow\infty. \end{align*} $$

Lemma 2.3. Let m be a positive integer and A a subset of $\mathbb {Z}_m$ . Then,

$$ \begin{align*} \sum_{n\in \mathbb{Z}_m}\sigma_A(n)=|A|^2, \end{align*} $$

where $|A|$ denotes the number of elements of A.

Proof. Clearly,

$$ \begin{align*} \sum\limits_{n\in \mathbb{Z}_m}\sigma_A(n)=\sum\limits_{n\in\mathbb{Z}_m}\sum\limits_{\substack{a_1+a_2=n\\a_1,a_2\in A}}1=\sum\limits_{\substack{a_1,a_2\in A\\a_1+a_2\in \mathbb{Z}_m}}1=\sum\limits_{a_1,a_2\in A}1=|A|^{2}. \end{align*} $$

This completes the proof of Lemma 2.3.

Lemma 2.4. Let p be a prime greater than $11$ . Then there is a subset $A\subset \mathbb {Z}_{2p^2}$ with $|A|\le 12p$ so that $\sigma _A(n)\ge 1$ for any $n\in \mathbb {Z}_{2p^2}$ .

Proof. Let p be a prime greater than $11$ . Then there are at least $(p-1)/2>5$ quadratic nonresidues mod p, which means that there is some quadratic nonresidue m so that

$$ \begin{align*} m+1\not\equiv 0 \pmod{p}, \quad 3m+1\not\equiv 0\pmod{p} \quad \text{and} \quad m+3\not\equiv 0 \pmod{p}. \end{align*} $$

Let $B=Q_{m+1}\cup Q_{m(m+1)}\cup Q_{2m}$ , $A_1=\lbrace u+2pv:(u,v)\in B\rbrace $ and $A=A_1\cup (A_1+p)$ , where $A_1+p:=\{a_1+p:a_1\in A_1\}$ . Obviously, A can be viewed as a subset of $\mathbb {Z}_{2p^2}$ .

We first show that $\sigma _A(n)\ge 1$ for any $n\in \mathbb {Z}_{2p^2}$ , that is, $A\in \mathcal {H}_{2p^2}$ (by the definition of $\mathcal {H}_{m}$ ). We follow the proof of Chen [Reference Chen2, Theorem 1]. For any $(u,v)\in B$ , we have $0\le u,v\le p-1$ . Let n be an element of $\mathbb {Z}_{2p^2}$ with $0\le n\le 2p^2-1$ . Then, we can assume that

$$ \begin{align*} n=c+2pd \end{align*} $$

with $p\le c\le 3p-1$ and $-1\le d\le p-1$ . By Lemma 2.1, there are $(u_1,v_1),(u_2,v_2)\in B$ so that

$$ \begin{align*} (c,d)=(u_1,v_1)+(u_2,v_2) \pmod{p}, \end{align*} $$

or in other words,

$$ \begin{align*} c\equiv u_1+u_2 \pmod{p} \quad \text{and} \quad d\equiv v_1+v_2 \pmod{p}. \end{align*} $$

Suppose that

$$ \begin{align*} c=u_1+u_2+ps \quad \text{and} \quad d=v_1+v_2+ph, \end{align*} $$

with $s,h\in \mathbb {Z}$ . Then, $s=0$ or $1$ or $2$ since $0\le u_1+u_2\le 2p-2$ and $p\le c\le 3p-1$ . Hence,

$$ \begin{align*} n&=c+2pd\\ &= u_1+2pv_1+u_2+2pv_2+ps+2p^2h \\ &\equiv u_1+2pv_1+u_2+2pv_2+ps \pmod{2p^2}. \end{align*} $$

If $s=0$ , then in $\mathbb {Z}_{2p^2}$ ,

$$ \begin{align*} n= (u_1+2pv_1)+(u_2+2pv_2)\in A_1+A_1\subset A+A. \end{align*} $$

If $s=1$ , then in $\mathbb {Z}_{2p^2}$ ,

$$ \begin{align*} n= (u_1+2pv_1+p)+(u_2+2pv_2)\in (A_1+p)+A_1\subset A+A. \end{align*} $$

If $s=2$ , then in $\mathbb {Z}_{2p^2}$ ,

$$ \begin{align*} n= (u_1+2pv_1+p)+(u_2+2pv_2+p)\in (A_1+p)+(A_1+p)\subset A+A. \end{align*} $$

Hence, in all cases, $\sigma _A(n)\ge 1$ for $n\in \mathbb {Z}_{2p^2}$ .

It can be easily seen that $|A_1|\le 2|B|$ from the construction. Therefore, for the set A constructed above,

$$ \begin{align*} |A|\le |A_1|+|A_1+p|=2|A_1|\le 2\times 2|B|=4|B| \end{align*} $$

and

$$ \begin{align*} |B|\leqslant|Q_{m+1}|+|Q_{m(m+1)}|+|Q_{2m}|=3p, \end{align*} $$

from which it follows that

$$ \begin{align*} |A|\le 12p. \end{align*} $$

This completes the proof of Lemma 2.4.

The final lemma gives a relation between the bases of $\mathbb {Z}_{m_1}$ and $\mathbb {Z}_{m_2}$ with certain constraints.

Lemma 2.5. Let $\varepsilon>0$ be an arbitrarily small number. Let $m_1$ and $m_2$ be two positive integers with $(2-\varepsilon )m_1<m_2<2m_1$ . If A is a subset of $\mathbb {Z}_{m_1}$ with $\sigma _A(n)\ge 1$ for any $n\in \mathbb {Z}_{m_1}$ , then there is a subset B of $\mathbb {Z}_{m_2}$ with $|B|\le 2|A|$ such that $\sigma _B(n)\ge 1$ for any $n\in \mathbb {Z}_{m_2}$ .

Proof. Suppose that $m_2=m_1+r$ , so that $(1-\varepsilon )m_1<r< m_1$ . Let

$$ \begin{align*} B=A\cup \{a+r:a\in A\}. \end{align*} $$

Then, $|B|\le 2|A|$ . It remains to prove $\sigma _B(n)\ge 1$ for any $n\in \mathbb {Z}_{m_2}$ .

Without loss of generality, we may assume $0\le a\le m_1-1$ for any $a\in A$ . For $0\le n\le m_1-1$ , there are two integers $a_1,a_2\in A$ so that $ n\equiv a_1+a_2\pmod {m_1}. $ Since $0\le a_1+a_2\le 2m_1-2$ , it follows that

$$ \begin{align*} n=a_1+a_2 \quad \text{or} \quad n=a_1+a_2-m_1. \end{align*} $$

If $n=a_1+a_2$ , then clearly $n\equiv a_1+a_2\pmod {m_2}$ . If $n=a_1+a_2-m_1$ , then

$$ \begin{align*} n+m_2=n+m_1+r=a_1+(a_2+r), \end{align*} $$

which means that $n\equiv a_1+(a_2+r)\pmod {m_2}$ . In both cases, $\sigma _B(n)\ge 1$ for any n with $0\le n\le m_1-1$ . We are left to consider the case $m_1\le n\le m_2-1$ . In this range,

$$ \begin{align*} 0<n-r\le m_2-1-r= m_1-1. \end{align*} $$

Thus, there are two elements $\widetilde {a_1},\widetilde {a_2}$ of A so that

$$ \begin{align*} n-r\equiv \widetilde{a_1}+\widetilde{a_2}\pmod{m_1}. \end{align*} $$

Again, by the constraint $0\le \widetilde {a_1}+\widetilde {a_2}\le 2m_1-2$ ,

$$ \begin{align*} n-r=\widetilde{a_1}+\widetilde{a_2} \quad \text{or} \quad n-r=\widetilde{a_1}+\widetilde{a_2}-m_1. \end{align*} $$

If $n-r=\widetilde {a_1}+\widetilde {a_2}$ , then we clearly have $n-r\equiv \widetilde {a_1}+\widetilde {a_2}\pmod {m_2}$ . Otherwise, we have $n-r=\widetilde {a_1}+\widetilde {a_2}-m_1$ . So, it can now be deduced that

$$ \begin{align*} n+m_2=\widetilde{a_1}+r+\widetilde{a_2}+r, \end{align*} $$

which is equivalent to $n\equiv (\widetilde {a_1}+r)+(\widetilde {a_2}+r)\pmod {m_2}$ .

Proof of Theorem 1.1.

Let $\varepsilon>0$ be an arbitrarily small given number. Then, by Lemma 2.2, there is some prime p so that

(2.1) $$ \begin{align} \sqrt{\frac{m}{4}}<p<\sqrt{\frac{m}{2(2-\varepsilon)}}, \end{align} $$

provided that m is sufficiently large (in terms of $\varepsilon $ ). By Lemma 2.4, there is a subset $A\subset \mathbb {Z}_{2p^2}$ with $|A|\le 12p$ so that $\sigma _{A}(n)\ge 1$ for any $n\in \mathbb {Z}_{2p^2}$ . From (2.1),

(2.2) $$ \begin{align} (2-\varepsilon)2p^2<m<2\times2p^2. \end{align} $$

Thus, by Lemma 2.5, there is a subset B of $\mathbb {Z}_{m}$ with

(2.3) $$ \begin{align} |B|\le 2|A|\le 24p \end{align} $$

such that $\sigma _B(n)\ge 1$ for any $n\in \mathbb {Z}_{m}$ . Hence, by Lemma 2.3,

$$ \begin{align*} \ell_m=\min\limits_{\widetilde{A}\in \mathcal{H}_m}\bigg\lbrace m^{-1}\sum_{n\in \mathbb{Z}_m}\sigma_{\widetilde{A}}(n)\bigg\rbrace\le m^{-1}\sum_{n\in \mathbb{Z}_m}\sigma_{B}(n)=\frac{|B|^2}{m}. \end{align*} $$

Employing (2.2) and (2.3),

$$ \begin{align*} \frac{|B|^2}{m}\le \frac{(24p)^2}{(2-\varepsilon)2p^2}=144\times\frac{2}{2-\varepsilon}. \end{align*} $$

Hence, it follows that

$$ \begin{align*} \limsup_{m\rightarrow\infty}\ell_m\le 144\times\frac{2}{2-\varepsilon} \end{align*} $$

for any $\varepsilon>0$ , which clearly means that

$$ \begin{align*} \limsup_{m\rightarrow\infty}\ell_m\le 144. \end{align*} $$

This completes the proof of Theorem 1.1.

3 Proof of Theorem 1.2

The proof of Theorem 1.2 is based on the following remarkable result of Singer.

Lemma 3.1 (Singer [Reference Singer14]).

Let p be a prime. Then, there exists a subset A of $\mathbb {Z}_{p^{2}+p+1}$ so that $\delta _A(n)=1$ for any $n\in \mathbb {Z}_{p^{2}+p+1}$ with $n\neq \overline {0}$ .

The next lemma is a variant of Lemma 2.3.

Lemma 3.2. Let m be a positive integer and A a subset of $\mathbb {Z}_m$ . Then,

$$ \begin{align*} \sum_{n\in \mathbb{Z}_m}\delta_A(n)=|A|^2, \end{align*} $$

where $|A|$ denotes the number of elements of A.

Proof. It is clear that

$$ \begin{align*} \sum\limits_{n\in \mathbb{Z}_m}\delta_A(n)=\sum\limits_{n\in\mathbb{Z}_m}\sum\limits_{\substack{a_1-a_2=n\\a_1,a_2\in A}}1=\sum\limits_{\substack{a_1,a_2\in A\\a_1-a_2\in \mathbb{Z}_m}}1=\sum\limits_{a_1,a_2\in A}1=|A|^{2}. \end{align*} $$

This completes the proof of Lemma 3.2.

We need another auxiliary lemma.

Lemma 3.3. Let $\varepsilon>0$ be an arbitrarily small number. Let m be a positive integer and p a prime number with

$$ \begin{align*} (2-\varepsilon)(p^{2}+p+1)<m<2(p^{2}+p+1). \end{align*} $$

If A is a subset of $\mathbb {Z}_{p^{2}+p+1}$ with $\delta _A(n)\ge 1$ for any $n\in \mathbb {Z}_{p^{2}+p+1}$ , then there is a subset B of $\mathbb {Z}_{m}$ with $|B|\le 2|A|$ such that $\delta _B(n)\ge 1$ for any $n\in \mathbb {Z}_{m}$ .

Proof. Suppose that $m{\kern-1pt}={\kern-1pt}(p^2{\kern-1pt}+{\kern-1pt}p{\kern-1pt}+{\kern-1pt}1){\kern-1pt}+{\kern-1pt}r$ . Then, $(1-\varepsilon )(p^2{\kern-1pt}+{\kern-1pt}p{\kern-1pt}+{\kern-1pt}1){\kern-1pt}<{\kern-1pt}r{\kern-1pt}<{\kern-1pt} (p^2{\kern-1pt}+{\kern-1pt} p{\kern-1pt}+{\kern-1pt}1)$ . Let

$$ \begin{align*} B=A\cup \{a+r:a\in A\}. \end{align*} $$

Then, $|B|\le 2|A|$ . It remains to prove $\delta _B(n)\ge 1$ for any $n\in \mathbb {Z}_{m}$ .

Without loss of generality, we can assume $0\le a\le p^2+p$ for any $a\in A$ . For $0\le n\le p^2+p$ , there are two integers $a_1,a_2\in A$ so that

$$ \begin{align*} n\equiv a_1-a_2\pmod{p^2+p+1}, \end{align*} $$

which means that

$$ \begin{align*} n= a_1-a_2 \quad \text{or} \quad n=a_1-a_2+(p^2+p+1) \end{align*} $$

since $-p^2-p\le a_1-a_2\le p^2+p$ . If $n=a_1-a_2$ , then we clearly have $n\equiv a_1-a_2 \pmod {m}$ . If $n=a_1-a_2+(p^2+p+1)$ , then

$$ \begin{align*} n-m=n-(p^2+p+1)-r=a_1-(a_2+r), \end{align*} $$

from which it can be deduced that $n\equiv a_1-(a_2+r)\pmod {m}$ . In both cases, we have $\delta _B(n)\ge 1$ for any n with $0\le n\le p^2+p$ . We are left to consider the case $p^2+p+1\le n\le m-1$ . In this case,

$$ \begin{align*} 0<n-r\le m-1-r=p^2+p. \end{align*} $$

Thus, there are two elements $\widetilde {a_1},\widetilde {a_2}$ of A so that

$$ \begin{align*} n-r\equiv \widetilde{a_1}-\widetilde{a_2}\pmod{m}. \end{align*} $$

Again, by the constraint $-p^2-p\le \widetilde {a_1}-\widetilde {a_2}\le p^2+p$ , we have

$$ \begin{align*} n-r=\widetilde{a_1}-\widetilde{a_2} \quad \text{or} \quad n-r=\widetilde{a_1}-\widetilde{a_2}+(p^2+p+1). \end{align*} $$

If $n-r=\widetilde {a_1}-\widetilde {a_2}$ , then we clearly have $n-r\equiv \widetilde {a_1}-\widetilde {a_2}\pmod {m}$ . Otherwise, we have $n-r=\widetilde {a_1}-\widetilde {a_2}+(p^2+p+1)$ , from which it clearly follows that

$$ \begin{align*} n-m=\widetilde{a_1}-\widetilde{a_2}. \end{align*} $$

So we also deduce $n\equiv \widetilde {a_1}-\widetilde {a_2}\pmod {m}$ .

We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2.

Let $\varepsilon>0$ be an arbitrarily small given number. By Lemma 2.2, there is some prime p so that

$$ \begin{align*} \frac{\sqrt{2m-3}-1}{2}<p<\frac{\sqrt{\frac{4}{2-\varepsilon}m-3}-1}{2} \end{align*} $$

providing that m is sufficiently large (in terms of $\varepsilon $ ). Equivalently,

(3.1) $$ \begin{align} (2-\varepsilon)(p^{2}+p+1)<m<2(p^{2}+p+1). \end{align} $$

By Lemma 3.1, there is a subset A of $\mathbb {Z}_{p^{2}+p+1}$ so that $\delta _A(n)=1$ for any $n\in \mathbb {Z}_{p^{2}+p+1}$ with $n\neq \overline {0}$ . Employing Lemma 3.2,

$$ \begin{align*} |A|^2=\sum\limits_{n\in \mathbb{Z}_{p^{2}+p+1}}\delta_A(n)=\sum\limits_{n\in \mathbb{Z}_{p^{2}+p+1},~n\neq \overline{0}}\delta_A(n)+\delta_A(0)=p^{2}+p+|A|, \end{align*} $$

from which it follows clearly that

$$ \begin{align*} |A|=p+1. \end{align*} $$

By Lemma 3.3 and (3.1), there is a subset B of $\mathbb {Z}_{m}$ with

(3.2) $$ \begin{align} |B|\le 2|A|\le 2(p+1) \end{align} $$

such that $\delta _B(n)\ge 1$ for any $n\in \mathbb {Z}_{m}$ . Thus, by the definition of $g_m$ and Lemma 3.2 again,

$$ \begin{align*} g_m=\min\limits_{\widetilde{A}\in \mathcal{K}_m}\bigg\lbrace m^{-1}\sum_{n\in \mathbb{Z}_m}\delta_{\widetilde{A}}(n)\bigg\rbrace\le m^{-1}\sum_{n\in \mathbb{Z}_m}\delta_{B}(n)=\frac{|B|^2}{m}. \end{align*} $$

From (3.1) and (3.2),

$$ \begin{align*} \frac{|B|^2}{m}\le \frac{4(p+1)^2}{(2-\varepsilon)(p^{2}+p+1)}\le \frac{4}{2-\varepsilon/2}, \end{align*} $$

provided that m (hence p) is sufficiently large (in terms of $\varepsilon $ ). Hence, we conclude that

$$ \begin{align*} \limsup_{m\rightarrow\infty}g_m\le \frac{4}{2-\varepsilon/2} \end{align*} $$

for any $\varepsilon>0$ , which clearly means that

$$ \begin{align*} \limsup_{m\rightarrow\infty}g_m\le 2. \end{align*} $$

This completes the proof of Theorem 1.2.

Acknowledgement

The authors would like to thank Professor Yuchen Ding for his generous help and very helpful comments.

References

Borwein, P., Choi, S. and Chu, F., ‘An old conjecture of Erdős–Turán on additive bases’, Math. Comp. 75 (2006), 475484.CrossRefGoogle Scholar
Chen, Y.-G., ‘The analogue of Erdős–Turán conjecture in ${\mathbb{Z}}_m$ ’, J. Number Theory 128 (2008), 25732581.CrossRefGoogle Scholar
Chen, Y.-G. and Sun, T., ‘The difference basis and bi-basis of ${\mathbb{Z}}_m$ ’, J. Number Theory 130 (2010), 716726.CrossRefGoogle Scholar
Davenport, H., Multiplicative Number Theory, 2nd edn, Graduate Texts in Mathematics, 74 (Springer-Verlag, New York, 1980).CrossRefGoogle Scholar
Ding, Y. and Zhao, L., ‘A new upper bound on Ruzsa’s numbers on the Erdős–Turán conjecture’, Int. J. Number Theory 20 (2024), 15151523.CrossRefGoogle Scholar
Erdős, P. and Turán, P., ‘On a problem of Sidon in additive number theory, and on some related problems’, J. Lond. Math. Soc. (2) 16 (1941), 212215.CrossRefGoogle Scholar
Evans, T. A. and Mann, H. B., ‘On simple difference sets’, Sankhyā 11 (1951), 357364.Google Scholar
Grekos, G., Haddad, L., Helou, C. and Pihko, J., ‘On the Erdős–Turán conjecture’, J. Number Theory 102 (2003), 339352.CrossRefGoogle Scholar
Guy, R. K., Unsolved Problems in Number Theory, 3rd edn, Problem Books in Mathematics, 1 (Springer-Verlag, New York, 2004).CrossRefGoogle Scholar
Halberstam, H. and Roth, K. F., Sequences (Clarendon Press, Oxford, 1966).Google Scholar
Hall, M. Jr, ‘Cyclic projective planes’, Duke Math. J. 14 (1947), 10791090.Google Scholar
Ruzsa, I. Z., ‘A just basis’, Monatsh. Math. 109 (1990), 145151.CrossRefGoogle Scholar
Sándor, C. and Yang, Q.-H., ‘A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture’, Acta Arith. 180 (2017), 161169.CrossRefGoogle Scholar
Singer, J., ‘A theorem in finite projective geometry and some applications to number theory’, Trans. Amer. Math. Soc. 43 (1938), 377385.CrossRefGoogle Scholar
Tang, M. and Chen, Y.-G., ‘A basis of ${\mathbb{Z}}_m$ ’, Colloq. Math. 104 (2006), 99103.CrossRefGoogle Scholar
Tang, M. and Chen, Y.-G., ‘A basis of ${\mathbb{Z}}_m$ , II’, Colloq. Math. 108 (2007), 141145.CrossRefGoogle Scholar
Tao, T. and Van Vu, H., Additive Combinatorics, Cambridge Studies in Advanced Mathematics, 105 (Cambridge University Press, Cambridge, 2010).Google Scholar
Zhang, Y., ‘On the difference bases of ${\mathbb{Z}}_m$ ’, Period. Math. Hungar., to appear. Published online (10 July 2024).CrossRefGoogle Scholar