Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T03:37:44.007Z Has data issue: false hasContentIssue false

DNA nanotechnology for building artificial dynamic systems

Published online by Cambridge University Press:  12 July 2019

Na Liu*
Affiliation:
Max Planck Institute for Intelligent Systems, and Kirchhoff Institute for Physics, University of Heidelberg, Germany; na.liu@kip.uni-heidelberg.de
Get access

Abstract

A fundamental design rule that nature has developed for biological machines is the intimate correlation between motion and function. One class of biological machines is molecular motors in living cells, which directly convert chemical energy into mechanical work. They coexist in every eukaryotic cell, but differ in their types of motion, the filaments they bind to, the cargos they carry, as well as the work they perform. Such natural structures offer inspiration and blueprints for constructing DNA-assembled artificial systems, which mimic their functionality. In this article, we describe two groups of cytoskeletal motors, linear and rotary motors. We discuss how their artificial analogues can be built using DNA nanotechnology. Finally, we summarize ongoing research directions and conclude that DNA origami has a bright future ahead.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article is based on The Kavli Foundation Early Career Lectureship in Materials Science presentation given by Na Liu at the 2018 MRS Fall Meeting in Boston, Mass.

References

MacCready, P.B., “Of Birds, Bees, and Airplanes: Technology Can Take Lessons from Nature on How to Produce Flying Machines,” IEEE Potentials 6, 29 (1987).CrossRefGoogle Scholar
Lee, S.Y., Yasuda, T., Yang, Y.S., Zhang, Q., Adachi, C., Angew. Chem. Int. Ed. Engl. vol. 126, 6520 (2014).CrossRefGoogle Scholar
Dushkina, N., Lakhtakia, A., Proc. SPIE 7401, Martin-Palma, R.J., Lakhtakia, A., Eds. (SPIE, the International Society for Optics and Photonics, 2011), p. 740106.Google Scholar
Piccolino, M., Nat. Rev. Mol. Cell Biol. 1, 149 (2000).CrossRefGoogle Scholar
Bao, G., Suresh, S., Nat. Mater. 2, 715 (2003).CrossRefGoogle Scholar
Howard, J., Hudspeth, A., Vale, R., Nature 342, 154 (1989).CrossRefGoogle Scholar
Burgess, S.A., Walker, M.L., Sakakibara, H., Knight, P.J., Oiwa, K., Nature 421, 715 (2003).CrossRefGoogle Scholar
Finer, J.T., Simmons, R.M., Spudich, J.A., Nature 368, 113 (1994).CrossRefGoogle Scholar
Guix, M., Mayorga-Martinez, C.C., Merkoçi, A., Chem. Rev. 114, 6285 (2014).CrossRefGoogle Scholar
Rothemund, P.W.K., Nature 440, 297 (2006).CrossRefGoogle Scholar
Bathe, M., Rothemund, P.W.K., MRS Bull . 42 (12), 882 (2017).CrossRefGoogle Scholar
Seeman, N.C., J. Theor. Biol. 99, 237 (1982).CrossRefGoogle Scholar
Kuzyk, A., Jungmann, R., Acuna, G.P., Liu, N., ACS Photonics 5, 1151 (2018).CrossRefGoogle Scholar
Zhou, C., Duan, X., Liu, N., Acc. Chem. Res. 50, 2906 (2017).CrossRefGoogle Scholar
Liu, N., Liedl, T., Chem. Rev. 118, 3032 (2018).CrossRefGoogle Scholar
Kuzyk, A., Yang, Y., Duan, X., Stoll, S., Govorov, A.O., Sugiyama, H., Endo, M., Liu, N., Nat. Commun. 7, 10591 (2016).CrossRefGoogle Scholar
Zhou, C., Xin, L., Duan, X., Urban, M.J., Liu, N., Nano Lett . 18, 7395 (2018).CrossRefGoogle Scholar
Kuzyk, A., Urban, M.J., Idili, A., Ricci, F., Liu, N., Sci. Adv. 3, e1602803 (2017).CrossRefGoogle Scholar
Feynman, R., in Feynman and Computation (CRC Press, Boca Raton, FL, 2018), pp. 6376.CrossRefGoogle Scholar
Lodish, H., Berk, A., Darnell, J.E., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H., Matsudaira, P., Molecular Cell Biology (Macmillan, 2008, London, UK).Google Scholar
Van den Heuvel, M.G., Dekker, C., Science 317, 333 (2007).CrossRefGoogle Scholar
Hirokawa, N., Science 279, 519 (1998).CrossRefGoogle Scholar
Sweeney, H.L., Houdusse, A., Annu. Rev. Biophys. 39, 539 (2010).CrossRefGoogle Scholar
Junge, W., Pänke, O., Cherepanov, D.A., Gumbiowski, K., Müller, M., Engelbrecht, S., FEBS Lett . 504, 152 (2001).CrossRefGoogle Scholar
Schnitzer, M.J., Block, S.M., Nature 388, 386 (1997).CrossRefGoogle Scholar
Gu, H., Chao, J., Xiao, S.-J., Seeman, N.C., Nature 465, 202 (2010).CrossRefGoogle Scholar
Zhou, C., Duan, X.Y., Liu, N., Nat. Commun. 6, (2015).Google Scholar
Thubagere, A.J., Li, W., Johnson, R.F., Chen, Z., Doroudi, S., Lee, Y.L., Izatt, G., Wittman, S., Srinivas, N., Woods, D., Science 357, 6558 (2017).CrossRefGoogle Scholar
Mann, B.J., Wadsworth, P., Trends Cell Biol . 29, 66 (2019).CrossRefGoogle Scholar
Kapitein, L.C., Peterman, E.J., Kwok, B.H., Kim, J.H., Kapoor, T.M., Schmidt, C.F., Nature 435, 114 (2005).CrossRefGoogle Scholar
Valentine, M.T., Fordyce, P.M., Krzysiak, T.C., Gilbert, S.P., Block, S.M., Nat. Cell Biol. 8, 470 (2006).CrossRefGoogle Scholar
Urban, M.J., Both, S., Zhou, C., Kuzyk, A., Lindfors, K., Weiss, T., Liu, N., Nat. Commun. 9, 1454 (2018).CrossRefGoogle Scholar
Wenz, G., Han, B.-H., Müller, A., Chem. Rev. 106, 782 (2006).CrossRefGoogle Scholar
Marras, A.E., Zhou, L., Su, H.-J., Castro, C.E., Proc. Natl. Acad. Sci. U.S.A. 112, 713 (2015).CrossRefGoogle Scholar
List, J., Falgenhauer, E., Kopperger, E., Pardatscher, G., Simmel, F.C., Nat. Commun. 7, 12414 (2016).CrossRefGoogle Scholar
Junge, W., Müller, D.J., Science 333, 704 (2011).CrossRefGoogle Scholar
Diez, M., Zimmermann, B., Börsch, M., König, M., Schweinberger, E., Steigmiller, S., Reuter, R., Felekyan, S., Kudryavtsev, V., Seidel, C.A., Nat. Struct. Mol. Biol. 11, 135 (2004).CrossRefGoogle Scholar
Schnitzer, M.J., Nature 410, 878 (2001).CrossRefGoogle Scholar
Kuzyk, A., Schreiber, R., Zhang, H., Govorov, A.O., Liedl, T., Liu, N., Nat. Mater. 13, 862 (2014).CrossRefGoogle Scholar
Ketterer, P., Willner, E.M., Dietz, H., Sci. Adv. 2, e1501209 (2016).CrossRefGoogle Scholar
Kopperger, E., List, J., Madhira, S., Rothfischer, F., Lamb, D.C., Simmel, F.C., Science 359, 296 (2018).CrossRefGoogle Scholar
Schreiber, R., Do, J., Roller, E.-M., Zhang, T., Schüller, V.J., Nickels, P.C., Feldmann, J., Liedl, T., Nat. Nanotech. 9, 74 (2014).CrossRefGoogle Scholar
Kuzyk, A., Laitinen, K.T., Törmä, P., Nanotechnology 20, 235305 (2009).CrossRefGoogle Scholar
Fu, J., Yang, Y.R., Johnson-Buck, A., Liu, M., Liu, Y., Walter, N.G., Woodbury, N.W., Yan, H., Nat. Nanotech. 9, 531 (2014).CrossRefGoogle Scholar
Jungmann, R., Avendaño, M.S., Woehrstein, J.B., Dai, M., Shih, W.M., Yin, P., Nat. Methods. 11, 313 (2014).CrossRefGoogle Scholar
Li, S., Jiang, Q., Liu, S., Zhang, Y., Tian, Y., Song, C., Wang, J., Zou, Y., Anderson, G.J., Han, J.-Y., Nat. Biotechnol. 36, 258 (2018).CrossRefGoogle Scholar