1 Introduction
Skew brace structure plays a key role in the combinatorial theory of the Yang–Baxter equation. Skew left braces, introduced in [Reference Guarnieri and Vendramin8], can be regarded as extensions of Jacobson radical rings and show connections with several areas of mathematics such as triply factorized groups and Hopf–Galois structures (see [Reference Ballester-Bolinches and Esteban-Romero1, Reference Caranti and Stefanello3, Reference Childs4])
Skew left braces classify solutions of the Yang–Baxter equation (see [Reference Guarnieri and Vendramin8]). This connection to the Yang–Baxter equation motivates the search for constructions of skew braces and classification results.
 Recall that a skew left brace is a set endowed with two group structures 
 $(B,+)$
, not necessarily abelian, and
$(B,+)$
, not necessarily abelian, and 
 $(B,\cdot )$
 which are linked by the distributive-like law
$(B,\cdot )$
 which are linked by the distributive-like law 
 ${a(b+c)}=ab-a+ac$
 for a, b,
${a(b+c)}=ab-a+ac$
 for a, b, 
 $c\in B$
.
$c\in B$
.
In the sequel, the word brace refers to a skew left brace.
Given a brace B, there is an action of the multiplicative group on the additive group by means of the so-called lambda map:
 $$\begin{align*}\lambda \colon a \in (B,\cdot) \longmapsto \lambda_a \in \operatorname{\mathrm{Aut}}(B,+), \quad \lambda_a(b)=-a+ab, \ \text{for all }a,b\in B.\end{align*}$$
$$\begin{align*}\lambda \colon a \in (B,\cdot) \longmapsto \lambda_a \in \operatorname{\mathrm{Aut}}(B,+), \quad \lambda_a(b)=-a+ab, \ \text{for all }a,b\in B.\end{align*}$$
Braces can be described in terms of regular subgroups of the holomorph of the additive group. Recall that the holomorph of a group G is the semidirect product 
 $\operatorname {\mathrm {Hol}}(G) = [G]\operatorname {\mathrm {Aut}}(G)$
. Let B be a brace and set
$\operatorname {\mathrm {Hol}}(G) = [G]\operatorname {\mathrm {Aut}}(G)$
. Let B be a brace and set 
 $K = (B,+)$
. Then
$K = (B,+)$
. Then 
 $H=\{ (a,\lambda _a) \mid a\in B\}$
 is a regular subgroup of the holomorph
$H=\{ (a,\lambda _a) \mid a\in B\}$
 is a regular subgroup of the holomorph 
 $\operatorname {\mathrm {Hol}}(K)$
 isomorphic to
$\operatorname {\mathrm {Hol}}(K)$
 isomorphic to 
 $(B, {\cdot })$
 (see [Reference Guarnieri and Vendramin8, Theorem 4.2]). If we consider the subgroup
$(B, {\cdot })$
 (see [Reference Guarnieri and Vendramin8, Theorem 4.2]). If we consider the subgroup 
 $S = KH \leq \operatorname {\mathrm {Hol}}(K)$
, then
$S = KH \leq \operatorname {\mathrm {Hol}}(K)$
, then 
 $$\begin{align*}S=KH=KE=HE,\end{align*}$$
$$\begin{align*}S=KH=KE=HE,\end{align*}$$
where 
 $E = \{(0,\lambda _b)\mid b \in B\}$
 and
$E = \{(0,\lambda _b)\mid b \in B\}$
 and 
 $\operatorname {\mathrm {C}}_{E}(K)= K\cap E =H\cap E =1$
. We call
$\operatorname {\mathrm {C}}_{E}(K)= K\cap E =H\cap E =1$
. We call 
 $\mathsf {S}(B)=(S, K, H, E)$
 the small trifactorized group associated with B.
$\mathsf {S}(B)=(S, K, H, E)$
 the small trifactorized group associated with B.
In [Reference Tsang9], Tsang showed it is possible to construct finite braces by just looking at the automorphism group of the additive group instead of looking at the whole holomorph. This is a significant improvement both from an algebraic and computational approach.
Theorem 1 (see [Reference Tsang9, Corollary 2.2])
 If the finite group G is the multiplicative group of a brace with additive group K, then there exist two subgroups X and Y of 
 $\operatorname {\mathrm {Aut}}(K)$
 that are quotients of G satisfying
$\operatorname {\mathrm {Aut}}(K)$
 that are quotients of G satisfying 
 $$\begin{align*}XY=X{\operatorname{\mathrm{Inn}}(K)}=Y{\operatorname{\mathrm{Inn}}(K)}.\end{align*}$$
$$\begin{align*}XY=X{\operatorname{\mathrm{Inn}}(K)}=Y{\operatorname{\mathrm{Inn}}(K)}.\end{align*}$$
She looked for a sort of converse of the above theorem in the case of finite braces with an additive group of trivial centre, and proved the following.
Theorem 2 (see [Reference Tsang9, Proposition 2.7])
 Suppose that the centre of a finite group 
 $(K, {+})$
 is trivial and let P be a subgroup of
$(K, {+})$
 is trivial and let P be a subgroup of 
 $\operatorname {\mathrm {Aut}}(K)$
 containing
$\operatorname {\mathrm {Aut}}(K)$
 containing 
 $\operatorname {\mathrm {Inn}}(K)$
. If
$\operatorname {\mathrm {Inn}}(K)$
. If 
 $P=XY$
 is a factorization by two subgroups X and Y such that
$P=XY$
 is a factorization by two subgroups X and Y such that 
 $X\cap Y=1$
,
$X\cap Y=1$
, 
 $X{\operatorname {\mathrm {Inn}}(K)}=Y{\operatorname {\mathrm {Inn}}(K)}=P$
 and X splits over
$X{\operatorname {\mathrm {Inn}}(K)}=Y{\operatorname {\mathrm {Inn}}(K)}=P$
 and X splits over 
 $X\cap \operatorname {\mathrm {Inn}}(K)$
, then there exists a brace B whose additive group is isomorphic to
$X\cap \operatorname {\mathrm {Inn}}(K)$
, then there exists a brace B whose additive group is isomorphic to 
 $(K, {+})$
 and whose multiplicative group is isomorphic to a semidirect product
$(K, {+})$
 and whose multiplicative group is isomorphic to a semidirect product 
 $[X\cap \operatorname {\mathrm {Inn}}(K)]Y$
 for a suitable choice of the action
$[X\cap \operatorname {\mathrm {Inn}}(K)]Y$
 for a suitable choice of the action 
 $\alpha \colon Y\longrightarrow \operatorname {\mathrm {Aut}}(X\cap \operatorname {\mathrm {Inn}}(K))$
.
$\alpha \colon Y\longrightarrow \operatorname {\mathrm {Aut}}(X\cap \operatorname {\mathrm {Inn}}(K))$
.
The above two theorems are the key to prove the main results of [Reference Tsang9, Reference Tsang10].
In [Reference Tsang11], Tsang posed the following question.
Question 3 Is it possible to extend Theorem 2 by dropping the assumption that X splits over 
 $X\cap \operatorname {\mathrm {Inn}}(K)$
?
$X\cap \operatorname {\mathrm {Inn}}(K)$
?
The aim of this article is to give a complete characterization of the multiplicative groups of a brace with additive group of trivial centre. As a consequence, we present an improved version of Theorem 2 (on which the main result of [Reference Tsang9] heavily depends), and we give an affirmative answer to Question 3.
Theorem A Let K be a finite group with trivial centre. For every brace B with additive group 
 $K = (B,+)$
 and multiplicative group
$K = (B,+)$
 and multiplicative group 
 $C = (B,\cdot )$
, there exist subgroups X and Y of
$C = (B,\cdot )$
, there exist subgroups X and Y of 
 $Aut(K)$
 satisfying the following properties:
$Aut(K)$
 satisfying the following properties: 
- 
(a)  $XY=X{\operatorname {\mathrm {Inn}}(K)}=Y{\operatorname {\mathrm {Inn}}(K)}$
, $XY=X{\operatorname {\mathrm {Inn}}(K)}=Y{\operatorname {\mathrm {Inn}}(K)}$
,
- 
(b) there are two subgroups N and M of  $\operatorname {\mathrm {Inn}}(K)$
 such that $\operatorname {\mathrm {Inn}}(K)$
 such that $N \unlhd X$
 and $N \unlhd X$
 and $M \unlhd Y$
, $M \unlhd Y$
,
- 
(c) there exists an isomorphism  $\gamma \colon Y/M\longrightarrow X/N$
 such that $\gamma \colon Y/M\longrightarrow X/N$
 such that $$\begin{align*}\operatorname{\mathrm{Inn}}(K) = \{xy^{-1}\mid x\in X, \, y\in Y,\, \gamma(yM) = xN\},\end{align*}$$ $$\begin{align*}\operatorname{\mathrm{Inn}}(K) = \{xy^{-1}\mid x\in X, \, y\in Y,\, \gamma(yM) = xN\},\end{align*}$$
- 
(d)  $\lvert K\rvert =\lvert X\rvert \lvert M\rvert =\lvert Y\rvert \lvert N\rvert $
. $\lvert K\rvert =\lvert X\rvert \lvert M\rvert =\lvert Y\rvert \lvert N\rvert $
.
In this case,
- 
(e) C has two normal subgroups T and V with  $T\cap V=1$
, $T\cap V=1$
, $X\cong C/T$
 and $X\cong C/T$
 and $Y\cong C/V$
, that is, C is a subdirect product of X and Y. $Y\cong C/V$
, that is, C is a subdirect product of X and Y.
 Conversely, for every pair X, Y of subgroups of 
 $\operatorname {\mathrm {Aut}}(K)$
 satisfying conditions (a)–(d), there exists a brace B with
$\operatorname {\mathrm {Aut}}(K)$
 satisfying conditions (a)–(d), there exists a brace B with 
 $K = (B,+)$
 and
$K = (B,+)$
 and 
 $C= (B,\cdot )$
 satisfying (e).
$C= (B,\cdot )$
 satisfying (e).
Corollary 4 Let K be a finite group with trivial centre. Suppose that there exist subgroups X, Y of 
 $\operatorname {\mathrm {Aut}}(K)$
 such that
$\operatorname {\mathrm {Aut}}(K)$
 such that 
 $X \cap Y = 1$
 and
$X \cap Y = 1$
 and 
 $XY=X{\operatorname {\mathrm {Inn}}(K)}=Y{\operatorname {\mathrm {Inn}}(K)}$
. Then there exists a brace with additive group K and a multiplicative group that is isomorphic to a subdirect product of X and Y.
$XY=X{\operatorname {\mathrm {Inn}}(K)}=Y{\operatorname {\mathrm {Inn}}(K)}$
. Then there exists a brace with additive group K and a multiplicative group that is isomorphic to a subdirect product of X and Y.
Proof Assume that 
 $X\cap Y=1$
. Consider
$X\cap Y=1$
. Consider 
 $N=X\cap {\operatorname {\mathrm {Inn}}(K)}$
,
$N=X\cap {\operatorname {\mathrm {Inn}}(K)}$
, 
 $M=Y\cap {\operatorname {\mathrm {Inn}}(K)}$
. Then
$M=Y\cap {\operatorname {\mathrm {Inn}}(K)}$
. Then 
 $\lvert X\rvert \lvert M\rvert =\lvert K\rvert $
 as
$\lvert X\rvert \lvert M\rvert =\lvert K\rvert $
 as 
 $\lvert X\rvert \lvert Y\rvert =\lvert {\operatorname {\mathrm {Inn}}(K)}\rvert \lvert Y\rvert /\lvert Y\cap {\operatorname {\mathrm {Inn}}(K)}\rvert $
. Analogously,
$\lvert X\rvert \lvert Y\rvert =\lvert {\operatorname {\mathrm {Inn}}(K)}\rvert \lvert Y\rvert /\lvert Y\cap {\operatorname {\mathrm {Inn}}(K)}\rvert $
. Analogously, 
 $\lvert Y\rvert \lvert N\rvert =\lvert K\rvert $
. Moreover, since
$\lvert Y\rvert \lvert N\rvert =\lvert K\rvert $
. Moreover, since 
 $$\begin{align*}Y/M\cong Y{\operatorname{\mathrm{Inn}}(K)}/{\operatorname{\mathrm{Inn}}(K)}=X{\operatorname{\mathrm{Inn}}(K)}/{\operatorname{\mathrm{Inn}}(K)}\cong X/N,\end{align*}$$
$$\begin{align*}Y/M\cong Y{\operatorname{\mathrm{Inn}}(K)}/{\operatorname{\mathrm{Inn}}(K)}=X{\operatorname{\mathrm{Inn}}(K)}/{\operatorname{\mathrm{Inn}}(K)}\cong X/N,\end{align*}$$
we have an isomorphism 
 $\gamma \colon Y/M\longrightarrow X/N$
 given by
$\gamma \colon Y/M\longrightarrow X/N$
 given by 
 $\gamma (bM)=aN$
, where
$\gamma (bM)=aN$
, where 
 $b \in Y$
,
$b \in Y$
, 
 $a \in X$
 such that
$a \in X$
 such that 
 $ab^{-1} \in \operatorname {\mathrm {Inn}}(K)$
. Since
$ab^{-1} \in \operatorname {\mathrm {Inn}}(K)$
. Since 
 $X \cap Y = 1$
, for each
$X \cap Y = 1$
, for each 
 $k \in K$
, conjugation by k can be expressed as
$k \in K$
, conjugation by k can be expressed as 
 $ab^{-1}$
, for a unique
$ab^{-1}$
, for a unique 
 $a\in X$
 and
$a\in X$
 and 
 $b\in Y$
. Then, the groups X and Y satisfy Statements (a)–(d) of Theorem A, and therefore, there exists a brace whose additive group is K and whose multiplicative group is isomorphic to a subdirect product of X and Y.
$b\in Y$
. Then, the groups X and Y satisfy Statements (a)–(d) of Theorem A, and therefore, there exists a brace whose additive group is K and whose multiplicative group is isomorphic to a subdirect product of X and Y.
 Corollary 4 also allows to give a considerably shorter proof of the main results of [Reference Tsang9, Reference Tsang10] about the almost simple groups K that can appear as additive groups of braces with soluble multiplicative group. By Corollary 4, it is enough to find two subgroups X and Y of 
 $\operatorname {\mathrm {Aut}}(K)$
 such that
$\operatorname {\mathrm {Aut}}(K)$
 such that 
 $X \cap Y = 1$
 and
$X \cap Y = 1$
 and 
 $XY=X{\operatorname {\mathrm {Inn}}(K)}=Y{\operatorname {\mathrm {Inn}}(K)}$
. Therefore, Codes 2, 3, and 4 in the proof of [Reference Tsang9, Theorem 1.3] can be avoided, as well as checking in every case that the subgroup X splits over
$XY=X{\operatorname {\mathrm {Inn}}(K)}=Y{\operatorname {\mathrm {Inn}}(K)}$
. Therefore, Codes 2, 3, and 4 in the proof of [Reference Tsang9, Theorem 1.3] can be avoided, as well as checking in every case that the subgroup X splits over 
 $X\cap {\operatorname {\mathrm {Inn}}(K)}$
.
$X\cap {\operatorname {\mathrm {Inn}}(K)}$
.
 In Section 3, we present a worked example of a construction of a brace with additive group 
 $K = \operatorname {\mathrm {PSL}}_2(25)$
 by means of subgroups X and Y of
$K = \operatorname {\mathrm {PSL}}_2(25)$
 by means of subgroups X and Y of 
 $\operatorname {\mathrm {Aut}}(K)$
 satisfying all conditions of Theorem A but
$\operatorname {\mathrm {Aut}}(K)$
 satisfying all conditions of Theorem A but 
 $X \cap Y \neq 1$
.
$X \cap Y \neq 1$
.
2 Proof of Theorem A
Proof of Theorem A
 Suppose that B is a brace with additive group K and lambda map 
 $\lambda $
. Let
$\lambda $
. Let 
 $H=\{(b, \lambda _b)\!\mid b\in B\}$
 be the regular subgroup of
$H=\{(b, \lambda _b)\!\mid b\in B\}$
 be the regular subgroup of 
 $\operatorname {\mathrm {Hol}}(K)$
 appearing in the small trifactorized group
$\operatorname {\mathrm {Hol}}(K)$
 appearing in the small trifactorized group 
 $\mathsf {S}(B)=(S, K, H, E)$
 associated with B. Recall that H is isomorphic to the multiplicative group
$\mathsf {S}(B)=(S, K, H, E)$
 associated with B. Recall that H is isomorphic to the multiplicative group 
 $(C,\cdot )$
 of B,
$(C,\cdot )$
 of B, 
 $E= \{(0, \lambda _b)\!\mid b \in B\} \leq \operatorname {\mathrm {Hol}}(K)$
, and
$E= \{(0, \lambda _b)\!\mid b \in B\} \leq \operatorname {\mathrm {Hol}}(K)$
, and 
 $S = KH = KE = HE$
 with
$S = KH = KE = HE$
 with 
 $K\cap E=H\cap E= 1$
.
$K\cap E=H\cap E= 1$
.
 Observe that S acts on K by means of the homomorphism 
 $\pi \colon (b, \omega )\in S \mapsto \omega \in \operatorname {\mathrm {Aut}}(K)$
. On the other hand, S also acts on K by conjugation. In fact, this action naturally induces a homomorphism
$\pi \colon (b, \omega )\in S \mapsto \omega \in \operatorname {\mathrm {Aut}}(K)$
. On the other hand, S also acts on K by conjugation. In fact, this action naturally induces a homomorphism 
 $\alpha \colon S \rightarrow \operatorname {\mathrm {Aut}}(K)$
. In particular, for every
$\alpha \colon S \rightarrow \operatorname {\mathrm {Aut}}(K)$
. In particular, for every 
 $b\in B$
 and every
$b\in B$
 and every 
 $k \in K$
,
$k \in K$
, 
 $(0,\lambda _b)(k,1)(0,\lambda _b)^{-1}=(\lambda _b(k), 1)$
, that is,
$(0,\lambda _b)(k,1)(0,\lambda _b)^{-1}=(\lambda _b(k), 1)$
, that is, 
 $\alpha (0,\lambda _b) = \lambda _b = \pi (0,\lambda _b)$
. Thus,
$\alpha (0,\lambda _b) = \lambda _b = \pi (0,\lambda _b)$
. Thus, 
 $\alpha (E) = \pi (E) = \pi (H)$
.
$\alpha (E) = \pi (E) = \pi (H)$
.

Figure 1 Structure of the multiplicative group in Theorem A.
 The restrictions of 
 $\pi $
 and
$\pi $
 and 
 $\alpha $
 to H induce two actions of H on K, with respective kernels
$\alpha $
 to H induce two actions of H on K, with respective kernels 
 $\operatorname {\mathrm {Ker}}{\pi }|_H=K\cap H\trianglelefteq H$
 and
$\operatorname {\mathrm {Ker}}{\pi }|_H=K\cap H\trianglelefteq H$
 and 
 $\operatorname {\mathrm {Ker}}{\alpha |_H}=\operatorname {\mathrm {C}}_H(K)\trianglelefteq H$
. Moreover, it holds that
$\operatorname {\mathrm {Ker}}{\alpha |_H}=\operatorname {\mathrm {C}}_H(K)\trianglelefteq H$
. Moreover, it holds that 
 $$ \begin{align*} \operatorname{\mathrm{Ker}}{\pi}|_H\cap \operatorname{\mathrm{Ker}}{\alpha|_H} & = K\cap H\cap \operatorname{\mathrm{C}}_H(K)= K\cap H\cap \operatorname{\mathrm{C}}_S(K) \\ & = H\cap \operatorname{\mathrm{C}}_{K}(K)=H\cap \operatorname{\mathrm{Z}}(K)=1 \quad \text{(see Figure~1).} \end{align*} $$
$$ \begin{align*} \operatorname{\mathrm{Ker}}{\pi}|_H\cap \operatorname{\mathrm{Ker}}{\alpha|_H} & = K\cap H\cap \operatorname{\mathrm{C}}_H(K)= K\cap H\cap \operatorname{\mathrm{C}}_S(K) \\ & = H\cap \operatorname{\mathrm{C}}_{K}(K)=H\cap \operatorname{\mathrm{Z}}(K)=1 \quad \text{(see Figure~1).} \end{align*} $$
 Let 
 $X:=\alpha (H)$
 and
$X:=\alpha (H)$
 and 
 $Y := \pi (H) = \alpha (E) = \{\lambda _b\mid b\in B\}$
 such that
$Y := \pi (H) = \alpha (E) = \{\lambda _b\mid b\in B\}$
 such that 
 $X \cong H/{\operatorname {\mathrm {C}}_H(K)}$
 and
$X \cong H/{\operatorname {\mathrm {C}}_H(K)}$
 and 
 $Y \cong H/(K\cap H)$
. Since
$Y \cong H/(K\cap H)$
. Since 
 $\alpha (K)=\operatorname {\mathrm {Inn}}(K)$
, we have that
$\alpha (K)=\operatorname {\mathrm {Inn}}(K)$
, we have that 
 $$ \begin{align*} \alpha(S)&=\alpha(HE)=\alpha(KH)=\alpha(KE)\\ &=\alpha(H)\alpha(E)=\alpha(K)\alpha(H)=\alpha(K)\alpha(E)\\ &=XY=(\operatorname{\mathrm{Inn}}(K))X=(\operatorname{\mathrm{Inn}}(K))Y. \end{align*} $$
$$ \begin{align*} \alpha(S)&=\alpha(HE)=\alpha(KH)=\alpha(KE)\\ &=\alpha(H)\alpha(E)=\alpha(K)\alpha(H)=\alpha(K)\alpha(E)\\ &=XY=(\operatorname{\mathrm{Inn}}(K))X=(\operatorname{\mathrm{Inn}}(K))Y. \end{align*} $$
 Take 
 $R:=(H\cap K){\operatorname {\mathrm {C}}_H(K)} \unlhd H$
. Then,
$R:=(H\cap K){\operatorname {\mathrm {C}}_H(K)} \unlhd H$
. Then, 
 $N:=\alpha (R)\trianglelefteq \alpha (H)=X$
 and
$N:=\alpha (R)\trianglelefteq \alpha (H)=X$
 and 
 $ M:= \pi (R)\trianglelefteq \pi (H) = Y$
. It follows that
$ M:= \pi (R)\trianglelefteq \pi (H) = Y$
. It follows that 
 $N =\alpha (H\cap K)\le \alpha (K)=\operatorname {\mathrm {Inn}}(K)$
. On the other hand,
$N =\alpha (H\cap K)\le \alpha (K)=\operatorname {\mathrm {Inn}}(K)$
. On the other hand, 
 $M = \pi (\operatorname {\mathrm {C}}_H(K))$
 and if
$M = \pi (\operatorname {\mathrm {C}}_H(K))$
 and if 
 $(b,\lambda _b)\in {\operatorname {\mathrm {C}}_H(K)}$
, then for every
$(b,\lambda _b)\in {\operatorname {\mathrm {C}}_H(K)}$
, then for every 
 $k\in K$
,
$k\in K$
, 
 $$\begin{align*}(b, \lambda_b)(k,1)(b,\lambda_b)^{-1}=(b+\lambda_b(k)-b,1)=(k,1), \end{align*}$$
$$\begin{align*}(b, \lambda_b)(k,1)(b,\lambda_b)^{-1}=(b+\lambda_b(k)-b,1)=(k,1), \end{align*}$$
that is, 
 $\lambda _b$
 coincides with the inner automorphism of K induced by
$\lambda _b$
 coincides with the inner automorphism of K induced by 
 $-b$
. Thus,
$-b$
. Thus, 
 $M \le \operatorname {\mathrm {Inn}}(K)$
. Moreover, we see that
$M \le \operatorname {\mathrm {Inn}}(K)$
. Moreover, we see that 
 $$ \begin{align*} Y/M &\cong (H/\operatorname{\mathrm{Ker}}{\pi}|_H)/(R/\operatorname{\mathrm{Ker}}{\pi}|_H)\cong H/R\\ &\cong(H/\operatorname{\mathrm{Ker}}\alpha|_H)/(R/\operatorname{\mathrm{Ker}}\alpha|_H)\cong X/N; \end{align*} $$
$$ \begin{align*} Y/M &\cong (H/\operatorname{\mathrm{Ker}}{\pi}|_H)/(R/\operatorname{\mathrm{Ker}}{\pi}|_H)\cong H/R\\ &\cong(H/\operatorname{\mathrm{Ker}}\alpha|_H)/(R/\operatorname{\mathrm{Ker}}\alpha|_H)\cong X/N; \end{align*} $$
here the isomorphism 
 $\gamma \colon Y/M\longrightarrow X/N$
 is given by
$\gamma \colon Y/M\longrightarrow X/N$
 is given by 
 $\gamma (\lambda _b M)=\alpha _b\lambda _b N$
, where
$\gamma (\lambda _b M)=\alpha _b\lambda _b N$
, where 
 $\alpha _b$
 is the inner automorphism of K induced by b. Given
$\alpha _b$
 is the inner automorphism of K induced by b. Given 
 $a\in \gamma (\lambda _bM)$
, we have that
$a\in \gamma (\lambda _bM)$
, we have that 
 $a\lambda _b^{-1}\in \alpha _bN\subseteq \operatorname {\mathrm {Inn}}(K)$
. Furthermore, given
$a\lambda _b^{-1}\in \alpha _bN\subseteq \operatorname {\mathrm {Inn}}(K)$
. Furthermore, given 
 $x\in \operatorname {\mathrm {Inn}}(K)$
, we have that
$x\in \operatorname {\mathrm {Inn}}(K)$
, we have that 
 $x=\alpha _b$
 for some
$x=\alpha _b$
 for some 
 $b\in B$
 and so
$b\in B$
 and so 
 $\gamma (\lambda _b M)=\alpha _b\lambda _b N=x\lambda _b N$
 with
$\gamma (\lambda _b M)=\alpha _b\lambda _b N=x\lambda _b N$
 with 
 $(\alpha _b\lambda _b)\lambda _b^{-1}=x$
.
$(\alpha _b\lambda _b)\lambda _b^{-1}=x$
.
 Since 
 $\operatorname {\mathrm {Ker}}{\pi |}_H\cap {\operatorname {\mathrm {Ker}}\alpha |_H}=(H\cap K)\cap \operatorname {\mathrm {C}}_H(K)=1$
, we have that
$\operatorname {\mathrm {Ker}}{\pi |}_H\cap {\operatorname {\mathrm {Ker}}\alpha |_H}=(H\cap K)\cap \operatorname {\mathrm {C}}_H(K)=1$
, we have that 
 $\lvert R\rvert ={\lvert H\cap K\rvert }\lvert {\operatorname {\mathrm {C}}_H(K)}\rvert $
 and
$\lvert R\rvert ={\lvert H\cap K\rvert }\lvert {\operatorname {\mathrm {C}}_H(K)}\rvert $
 and 
 $\lvert M\rvert =\lvert R/(H\cap K)\rvert =\lvert \operatorname {\mathrm {C}}_H(K)\rvert $
,
$\lvert M\rvert =\lvert R/(H\cap K)\rvert =\lvert \operatorname {\mathrm {C}}_H(K)\rvert $
, 
 $\lvert N\rvert =\lvert R/{\operatorname {\mathrm {C}}_H(K)}\rvert =\lvert H\cap K\rvert $
. As
$\lvert N\rvert =\lvert R/{\operatorname {\mathrm {C}}_H(K)}\rvert =\lvert H\cap K\rvert $
. As 
 $\lvert X\rvert =\lvert K\rvert /\lvert {\operatorname {\mathrm {C}}_H(K)}\rvert $
 and
$\lvert X\rvert =\lvert K\rvert /\lvert {\operatorname {\mathrm {C}}_H(K)}\rvert $
 and 
 $\lvert Y\rvert =\lvert K\rvert /\lvert H\cap K\rvert $
, the claim about the order follows.
$\lvert Y\rvert =\lvert K\rvert /\lvert H\cap K\rvert $
, the claim about the order follows.
 Item (e) follows by the fact that H is isomorphic to the multiplicative group 
 $(C,\cdot )$
 of B, so that T and V are respectively isomorphic to
$(C,\cdot )$
 of B, so that T and V are respectively isomorphic to 
 $\operatorname {\mathrm {Ker}} \alpha |_H$
 and
$\operatorname {\mathrm {Ker}} \alpha |_H$
 and 
 $\operatorname {\mathrm {Ker}} \pi |_H$
.
$\operatorname {\mathrm {Ker}} \pi |_H$
.
 Now, suppose that 
 $\operatorname {\mathrm {Aut}}(K)$
 possesses subgroups X and Y satisfying conditions (a)–(d). Let
$\operatorname {\mathrm {Aut}}(K)$
 possesses subgroups X and Y satisfying conditions (a)–(d). Let 
 $$\begin{align*}W=\{(x,y)\mid x\in X,\, y\in Y,\, \gamma(yM)=xN\}\end{align*}$$
$$\begin{align*}W=\{(x,y)\mid x\in X,\, y\in Y,\, \gamma(yM)=xN\}\end{align*}$$
be a subdirect product of X and Y with amalgamated factor group 
 $Y/M\cong X/N$
 (see [Reference Doerk and Hawkes6, Chapter A, Definition 19.2]). By [Reference Doerk and Hawkes6, Chapter A, Proposition 19.1], and the hypothesis, we have that
$Y/M\cong X/N$
 (see [Reference Doerk and Hawkes6, Chapter A, Definition 19.2]). By [Reference Doerk and Hawkes6, Chapter A, Proposition 19.1], and the hypothesis, we have that 
 $\lvert W\rvert =\lvert K\rvert $
. Since
$\lvert W\rvert =\lvert K\rvert $
. Since 
 $\operatorname {\mathrm {Z}}(K)$
 is trivial, the map
$\operatorname {\mathrm {Z}}(K)$
 is trivial, the map 
 $\zeta \colon K\longrightarrow \operatorname {\mathrm {Inn}}(K)$
, where
$\zeta \colon K\longrightarrow \operatorname {\mathrm {Inn}}(K)$
, where 
 $\zeta (k)$
 is the inner automorphism of K induced by k, is an isomorphism. By hypothesis, the map
$\zeta (k)$
 is the inner automorphism of K induced by k, is an isomorphism. By hypothesis, the map 
 $W\longrightarrow \operatorname {\mathrm {Inn}}(K)$
 given by
$W\longrightarrow \operatorname {\mathrm {Inn}}(K)$
 given by 
 $(x,y)\longmapsto xy^{-1}$
 is surjective. Since
$(x,y)\longmapsto xy^{-1}$
 is surjective. Since 
 $\lvert W\rvert =\lvert \operatorname {\mathrm {Inn}}(K)\rvert =\lvert K\rvert $
, it is a bijection. We can consider
$\lvert W\rvert =\lvert \operatorname {\mathrm {Inn}}(K)\rvert =\lvert K\rvert $
, it is a bijection. We can consider 
 $H=\{(b,y)\mid (x,y)\in W,\, \zeta (b)=xy^{-1}\}\subseteq \operatorname {\mathrm {Hol}}(K)$
. Given
$H=\{(b,y)\mid (x,y)\in W,\, \zeta (b)=xy^{-1}\}\subseteq \operatorname {\mathrm {Hol}}(K)$
. Given 
 $(b, y)$
,
$(b, y)$
, 
 $(b_1, y_1)\in H$
, we have that
$(b_1, y_1)\in H$
, we have that 
 $(b, y)(b_1,y_1)=(b+y(b_1),yy_1)$
,
$(b, y)(b_1,y_1)=(b+y(b_1),yy_1)$
, 
 $\zeta (b)=xy^{-1}$
, and
$\zeta (b)=xy^{-1}$
, and 
 $\zeta (b_1)=x_1y_1^{-1}$
 with
$\zeta (b_1)=x_1y_1^{-1}$
 with 
 $(x,y)$
,
$(x,y)$
, 
 $(x_1, y_1)\in B$
. Then
$(x_1, y_1)\in B$
. Then 
 $$\begin{align*}\zeta(b+y(b_1))=\zeta(b)\zeta(y(b_1))=\zeta(b)y\zeta(b_1)y^{-1}=xy^{-1}yx_1y_1^{-1}y^{-1}=(xx_1)(yy_1)^{-1}\end{align*}$$
$$\begin{align*}\zeta(b+y(b_1))=\zeta(b)\zeta(y(b_1))=\zeta(b)y\zeta(b_1)y^{-1}=xy^{-1}yx_1y_1^{-1}y^{-1}=(xx_1)(yy_1)^{-1}\end{align*}$$
with 
 $(xx_1, yy_1)=(x,y)(x_1,y_1)\in W$
. Furthermore, if
$(xx_1, yy_1)=(x,y)(x_1,y_1)\in W$
. Furthermore, if 
 $(b, y)\in H$
, with
$(b, y)\in H$
, with 
 $\zeta (b)=xy^{-1}$
, we have that
$\zeta (b)=xy^{-1}$
, we have that 
 $(b, y)^{-1}=(y^{-1}(-b), y^{-1})$
 and
$(b, y)^{-1}=(y^{-1}(-b), y^{-1})$
 and 
 $$\begin{align*}\zeta(y^{-1}(-b))=y^{-1}\zeta(-b)y=y^{-1}\zeta(b)^{-1}y=y^{-1}yx^{-1}y=x^{-1}{(y^{-1})}^{-1}\end{align*}$$
$$\begin{align*}\zeta(y^{-1}(-b))=y^{-1}\zeta(-b)y=y^{-1}\zeta(b)^{-1}y=y^{-1}yx^{-1}y=x^{-1}{(y^{-1})}^{-1}\end{align*}$$
with 
 $(x^{-1}, y^{-1})=(x,y)^{-1}\in W$
. We conclude that H is a subgroup of
$(x^{-1}, y^{-1})=(x,y)^{-1}\in W$
. We conclude that H is a subgroup of 
 $\operatorname {\mathrm {Hol}}(K)$
. As the projection onto its first component is surjective, it turns out that it H is a regular subgroup of
$\operatorname {\mathrm {Hol}}(K)$
. As the projection onto its first component is surjective, it turns out that it H is a regular subgroup of 
 $\operatorname {\mathrm {Hol}}(K)$
 by [Reference Ballester-Bolinches, Esteban-Romero and Pérez-Calabuig2, Proposition 2.5] and so it is isomorphic to the multiplicative group of a brace with additive group K (see [Reference Guarnieri and Vendramin8, Theorem 4.2]).
$\operatorname {\mathrm {Hol}}(K)$
 by [Reference Ballester-Bolinches, Esteban-Romero and Pérez-Calabuig2, Proposition 2.5] and so it is isomorphic to the multiplicative group of a brace with additive group K (see [Reference Guarnieri and Vendramin8, Theorem 4.2]).
 We finish the proof by showing that the map 
 $\phi \colon H\to W$
 given by
$\phi \colon H\to W$
 given by 
 $(b, y)\longmapsto (\zeta (b)y, y)$
, where
$(b, y)\longmapsto (\zeta (b)y, y)$
, where 
 $\zeta (b)=xy^{-1}$
 and
$\zeta (b)=xy^{-1}$
 and 
 $(x, y)\in W$
, is an isomorphism. Indeed, if
$(x, y)\in W$
, is an isomorphism. Indeed, if 
 $\zeta (b)=xy^{-1}$
,
$\zeta (b)=xy^{-1}$
, 
 $\zeta (b_1)=x_1y_1^{-1}$
, where
$\zeta (b_1)=x_1y_1^{-1}$
, where 
 $(x,y)$
,
$(x,y)$
, 
 $(x_1,y_1)\in W$
, we have that
$(x_1,y_1)\in W$
, we have that 
 $$ \begin{align*} \phi(b,y)\phi(b_1,y_1)&=(\zeta(b)y,y)(\zeta(b_1)y_1,y_1)=(x,y)(x_1,y_1)=(xx_1,yy_1),\\ \phi((b,y)(b_1,y_1))&=\phi(b+y(b_1),yy_1)=(\zeta(b+y(b_1))yy_1,yy_1)\\ &=(\zeta(b)y\zeta(b_1)y^{-1}yy_1,yy_1)=(xy^{-1}yx_1y_1^{-1}y_1,yy_1)\\ &=(xx_1,yy_1). \end{align*} $$
$$ \begin{align*} \phi(b,y)\phi(b_1,y_1)&=(\zeta(b)y,y)(\zeta(b_1)y_1,y_1)=(x,y)(x_1,y_1)=(xx_1,yy_1),\\ \phi((b,y)(b_1,y_1))&=\phi(b+y(b_1),yy_1)=(\zeta(b+y(b_1))yy_1,yy_1)\\ &=(\zeta(b)y\zeta(b_1)y^{-1}yy_1,yy_1)=(xy^{-1}yx_1y_1^{-1}y_1,yy_1)\\ &=(xx_1,yy_1). \end{align*} $$
We conclude that 
 $\phi $
 is a group homomorphism. Assume that
$\phi $
 is a group homomorphism. Assume that 
 $\phi (b, y)=(\zeta (b)y,y)=(1,1)$
, with
$\phi (b, y)=(\zeta (b)y,y)=(1,1)$
, with 
 $\zeta (b)=xy^{-1}$
 and
$\zeta (b)=xy^{-1}$
 and 
 $(x,y)\in W$
, then
$(x,y)\in W$
, then 
 $y=1$
 and so
$y=1$
 and so 
 $\zeta (b)=x=1$
, which implies that
$\zeta (b)=x=1$
, which implies that 
 $b=0$
. Consequently,
$b=0$
. Consequently, 
 $\phi $
 is injective. As W and H are finite and have the same order, we obtain that
$\phi $
 is injective. As W and H are finite and have the same order, we obtain that 
 $\phi $
 is an isomorphism. Since C is isomorphic to H we have just proved that (e) holds for C.
$\phi $
 is an isomorphism. Since C is isomorphic to H we have just proved that (e) holds for C.
3 A worked example
 In general, we do not have that 
 $X\cap Y=1$
. Let us consider
$X\cap Y=1$
. Let us consider 
 $K=\operatorname {\mathrm {PSL}}_2(25)$
. Its automorphism group
$K=\operatorname {\mathrm {PSL}}_2(25)$
. Its automorphism group 
 $A=\operatorname {\mathrm {Aut}}(K)$
 is generated by
$A=\operatorname {\mathrm {Aut}}(K)$
 is generated by 
 $\operatorname {\mathrm {Inn}}(K)$
, the diagonal automorphism d induced by the conjugation by the matrix
$\operatorname {\mathrm {Inn}}(K)$
, the diagonal automorphism d induced by the conjugation by the matrix 
 $$\begin{align*}\mathsf{D}= \begin{bmatrix} \zeta&0\\ 0&1 \end{bmatrix}\in\operatorname{\mathrm{GL}}_2(25),\end{align*}$$
$$\begin{align*}\mathsf{D}= \begin{bmatrix} \zeta&0\\ 0&1 \end{bmatrix}\in\operatorname{\mathrm{GL}}_2(25),\end{align*}$$
where 
 $\zeta $
 is a primitive
$\zeta $
 is a primitive 
 $24$
th-root of unity of
$24$
th-root of unity of 
 $\operatorname {\mathrm {GF}}(25)$
, and the field automorphism f. The group A possesses a subgroup X generated by the inner automorphisms
$\operatorname {\mathrm {GF}}(25)$
, and the field automorphism f. The group A possesses a subgroup X generated by the inner automorphisms 
 $c_1$
,
$c_1$
, 
 $c_2$
, and
$c_2$
, and 
 $c_3$
 induced by the matrices
$c_3$
 induced by the matrices 
 $$\begin{align*}\mathsf{C}_1= \begin{bmatrix} \zeta^{4}&0\\ 0&\zeta^{20} \end{bmatrix},\qquad\mathsf{C}_2= \begin{bmatrix} 1&0\\ \zeta&1 \end{bmatrix},\qquad \mathsf{C}_3= \begin{bmatrix} 1&0\\ 1&1 \end{bmatrix}, \end{align*}$$
$$\begin{align*}\mathsf{C}_1= \begin{bmatrix} \zeta^{4}&0\\ 0&\zeta^{20} \end{bmatrix},\qquad\mathsf{C}_2= \begin{bmatrix} 1&0\\ \zeta&1 \end{bmatrix},\qquad \mathsf{C}_3= \begin{bmatrix} 1&0\\ 1&1 \end{bmatrix}, \end{align*}$$
respectively, and 
 $df$
. We have that
$df$
. We have that 
 $c_1$
 has order
$c_1$
 has order 
 $3$
,
$3$
, 
 $\langle c_2, c_3\rangle $
 is an elementary abelian group of order
$\langle c_2, c_3\rangle $
 is an elementary abelian group of order 
 $25$
,
$25$
, 
 $c_1$
 normalises
$c_1$
 normalises 
 $\langle c_2, c_3\rangle $
,
$\langle c_2, c_3\rangle $
, 
 $(df)c_1(df)^{-1}=c_1^{-1}$
,
$(df)c_1(df)^{-1}=c_1^{-1}$
, 
 $df$
 has order
$df$
 has order 
 $8$
, and
$8$
, and 
 $df$
 normalizes
$df$
 normalizes 
 $\langle c_2, c_3\rangle $
. Then the group
$\langle c_2, c_3\rangle $
. Then the group 
 $\langle df, c_1, c_2, c_3\rangle $
 has order
$\langle df, c_1, c_2, c_3\rangle $
 has order 
 $600$
.
$600$
.
 Let 
 $u_1$
 and
$u_1$
 and 
 $u_2$
 be the inner automorphisms induced by the conjugation by
$u_2$
 be the inner automorphisms induced by the conjugation by 
 $$\begin{align*}\mathsf{U_1}=\begin{bmatrix} \zeta^3&\zeta^{16}\\ \zeta^{13}&\zeta^{11} \end{bmatrix},\qquad \mathsf{U_2}= \begin{bmatrix} \zeta^{5}&\zeta^5\\ \zeta^9&\zeta^{22} \end{bmatrix}. \end{align*}$$
$$\begin{align*}\mathsf{U_1}=\begin{bmatrix} \zeta^3&\zeta^{16}\\ \zeta^{13}&\zeta^{11} \end{bmatrix},\qquad \mathsf{U_2}= \begin{bmatrix} \zeta^{5}&\zeta^5\\ \zeta^9&\zeta^{22} \end{bmatrix}. \end{align*}$$
Let 
 $Y=\langle u_1, dfu_2\rangle $
. We have that
$Y=\langle u_1, dfu_2\rangle $
. We have that 
 $u_1$
 has order
$u_1$
 has order 
 $13$
. Let
$13$
. Let 
 $$\begin{align*}\mathsf{R}= \begin{bmatrix} \zeta&0\\ 0&\zeta \end{bmatrix}\in\operatorname{\mathrm{Z}}(\operatorname{\mathrm{GL}}_2(25)),\qquad \mathsf{T}= \begin{bmatrix} 3&0\\ 4&2 \end{bmatrix} \end{align*}$$
$$\begin{align*}\mathsf{R}= \begin{bmatrix} \zeta&0\\ 0&\zeta \end{bmatrix}\in\operatorname{\mathrm{Z}}(\operatorname{\mathrm{GL}}_2(25)),\qquad \mathsf{T}= \begin{bmatrix} 3&0\\ 4&2 \end{bmatrix} \end{align*}$$
and let t be the automorphism induced by conjugation by 
 $\mathsf {T}$
. Then
$\mathsf {T}$
. Then 
 $(dfu_2)^2=dfu_2dfu_2=d^{f}{{u_2}}{}d^5u_2$
 is the automorphism induced by conjugation by
$(dfu_2)^2=dfu_2dfu_2=d^{f}{{u_2}}{}d^5u_2$
 is the automorphism induced by conjugation by 
 $$ \begin{align} \mathsf{D}\mathsf{U}_2^{(5)}\mathsf{D} ^5\mathsf{U}_2=\mathsf{R}^{15}\mathsf{T},\end{align} $$
$$ \begin{align} \mathsf{D}\mathsf{U}_2^{(5)}\mathsf{D} ^5\mathsf{U}_2=\mathsf{R}^{15}\mathsf{T},\end{align} $$
where 
 $\mathsf {U}_2^{(5)}$
 denotes the matrix whose entries are obtained from the entries of
$\mathsf {U}_2^{(5)}$
 denotes the matrix whose entries are obtained from the entries of 
 $\mathsf {U}_2$
 by applying the Frobenius field automorphism, that is,
$\mathsf {U}_2$
 by applying the Frobenius field automorphism, that is, 
 $(dfu_2)^2=t$
. As
$(dfu_2)^2=t$
. As 
 $(\mathsf {R}^{15}\mathsf {T})^2=\mathsf {R}^3$
, we conclude that
$(\mathsf {R}^{15}\mathsf {T})^2=\mathsf {R}^3$
, we conclude that 
 $dfu_2$
 has order
$dfu_2$
 has order 
 $4$
. We can also check that
$4$
. We can also check that 
 $(dfu_2)u_1(dfu_2)^{-1}=u_1^8$
. It follows that Y has order
$(dfu_2)u_1(dfu_2)^{-1}=u_1^8$
. It follows that Y has order 
 $52$
.
$52$
.
 By [Reference Conway, Curtis, Norton, Parker and Wilson5], X and Y are maximal subgroups of the almost simple group 
 $\operatorname {\mathrm {Inn}}(K)\langle df\rangle $
. Observe that
$\operatorname {\mathrm {Inn}}(K)\langle df\rangle $
. Observe that 
 $(df)^4c_3^2=(dfdf)^2c_3^2=(dd^5)^2c_3^2=d^{12}c_3^2$
 is induced by
$(df)^4c_3^2=(dfdf)^2c_3^2=(dd^5)^2c_3^2=d^{12}c_3^2$
 is induced by 
 $\mathsf {D}^{12}\mathsf {C}_3^2=\mathsf {R}^{18}\mathsf {T}$
, consequently,
$\mathsf {D}^{12}\mathsf {C}_3^2=\mathsf {R}^{18}\mathsf {T}$
, consequently, 
 $(df)^4c_3^2=t$
. This, together with Equation (1), shows that
$(df)^4c_3^2=t$
. This, together with Equation (1), shows that 
 $t\in X\cap Y$
. We note that
$t\in X\cap Y$
. We note that 
 $\operatorname {\mathrm {Inn}}(K)X=\operatorname {\mathrm {Inn}}(K)Y=\operatorname {\mathrm {Inn}}(K)\langle df\rangle $
. Moreover,
$\operatorname {\mathrm {Inn}}(K)X=\operatorname {\mathrm {Inn}}(K)Y=\operatorname {\mathrm {Inn}}(K)\langle df\rangle $
. Moreover, 
 $\lvert {X\cap Y}\rvert $
 divides
$\lvert {X\cap Y}\rvert $
 divides 
 $\gcd (\lvert X\rvert , \lvert Y\rvert )=4$
. If
$\gcd (\lvert X\rvert , \lvert Y\rvert )=4$
. If 
 $\lvert X\cap Y\rvert = 4$
, then
$\lvert X\cap Y\rvert = 4$
, then 
 $X\cap Y$
 is contained in
$X\cap Y$
 is contained in 
 $X\cap \operatorname {\mathrm {Inn}}(K)$
, but it is not contained in
$X\cap \operatorname {\mathrm {Inn}}(K)$
, but it is not contained in 
 $Y\cap \operatorname {\mathrm {Inn}}(K)$
. This shows that
$Y\cap \operatorname {\mathrm {Inn}}(K)$
. This shows that 
 $\lvert X\cap Y\rvert \le 2$
. Hence
$\lvert X\cap Y\rvert \le 2$
. Hence 
 $\lvert X\cap Y\rvert = 2$
. As
$\lvert X\cap Y\rvert = 2$
. As 
 $XY\subseteq \operatorname {\mathrm {Inn}}(K)\langle df\rangle $
,
$XY\subseteq \operatorname {\mathrm {Inn}}(K)\langle df\rangle $
, 
 $$\begin{align*}15\,600=\lvert \operatorname{\mathrm{Inn}}(K)\langle df\rangle\rvert\ge \lvert XY\rvert=\frac{\lvert X\rvert \lvert Y\rvert}{\lvert X\cap Y\rvert}=15\,600\cdot \frac{2}{\lvert X\cap Y\rvert}=15\,600,\end{align*}$$
$$\begin{align*}15\,600=\lvert \operatorname{\mathrm{Inn}}(K)\langle df\rangle\rvert\ge \lvert XY\rvert=\frac{\lvert X\rvert \lvert Y\rvert}{\lvert X\cap Y\rvert}=15\,600\cdot \frac{2}{\lvert X\cap Y\rvert}=15\,600,\end{align*}$$
and so 
 $XY=\operatorname {\mathrm {Inn}}(K)\langle df\rangle $
.
$XY=\operatorname {\mathrm {Inn}}(K)\langle df\rangle $
.
 Let 
 $N=\langle c_1, c_2, c_3, (df)^2\rangle \trianglelefteq X$
,
$N=\langle c_1, c_2, c_3, (df)^2\rangle \trianglelefteq X$
, 
 $M=\langle u_1\rangle \trianglelefteq Y$
. Then
$M=\langle u_1\rangle \trianglelefteq Y$
. Then 
 $\lvert N\rvert =150$
,
$\lvert N\rvert =150$
, 
 $\lvert M\rvert =13$
,
$\lvert M\rvert =13$
, 
 $N\le X\cap \operatorname {\mathrm {Inn}}(K)$
,
$N\le X\cap \operatorname {\mathrm {Inn}}(K)$
, 
 $M\le Y\cap \operatorname {\mathrm {Inn}}(K)$
,
$M\le Y\cap \operatorname {\mathrm {Inn}}(K)$
, 
 $Y/M\cong X/N\cong C_4$
, and
$Y/M\cong X/N\cong C_4$
, and 
 $\lvert K\rvert =\lvert X\rvert \lvert M\rvert = \lvert Y\rvert \lvert N\rvert $
. The isomorphism between
$\lvert K\rvert =\lvert X\rvert \lvert M\rvert = \lvert Y\rvert \lvert N\rvert $
. The isomorphism between 
 $Y/M$
 and
$Y/M$
 and 
 $X/N$
 is given by
$X/N$
 is given by 
 $\gamma ((dfu_2)^rM)=(df)^rN$
 for
$\gamma ((dfu_2)^rM)=(df)^rN$
 for 
 $0\le r < 4$
, and, since
$0\le r < 4$
, and, since 
 $d^6\in \operatorname {\mathrm {Inn}}(K)$
, it is clear that
$d^6\in \operatorname {\mathrm {Inn}}(K)$
, it is clear that 
 $$ \begin{align*} (df)(dfu_2)^{-1}&=c_0u_0^{-1}\in \operatorname{\mathrm{Inn}}(K),\\ (df)^2(dfu_2)^{-2}&=d^6t^{-1}\in \operatorname{\mathrm{Inn}}(K),\\ (df)^3(dfu_2)^{-3}&=(df)(d^6t^{-1}u_2^{-1})(df)^{-1}\in\operatorname{\mathrm{Inn}}(K). \end{align*} $$
$$ \begin{align*} (df)(dfu_2)^{-1}&=c_0u_0^{-1}\in \operatorname{\mathrm{Inn}}(K),\\ (df)^2(dfu_2)^{-2}&=d^6t^{-1}\in \operatorname{\mathrm{Inn}}(K),\\ (df)^3(dfu_2)^{-3}&=(df)(d^6t^{-1}u_2^{-1})(df)^{-1}\in\operatorname{\mathrm{Inn}}(K). \end{align*} $$
 Let 
 $z\in XY\cap \operatorname {\mathrm {Inn}}(K)$
. Recall that
$z\in XY\cap \operatorname {\mathrm {Inn}}(K)$
. Recall that 
 $X\cap Y=\langle t\rangle $
. Then there exist
$X\cap Y=\langle t\rangle $
. Then there exist 
 $x\in X$
,
$x\in X$
, 
 $y\in Y$
 with
$y\in Y$
 with 
 $z=xy^{-1}=(xt)(yt)^{-1}$
. We observe that
$z=xy^{-1}=(xt)(yt)^{-1}$
. We observe that 
 $t=(df)^4c_3^2\in N$
, but
$t=(df)^4c_3^2\in N$
, but 
 $t\notin M$
 by order considerations. Given
$t\notin M$
 by order considerations. Given 
 $x\in X$
,
$x\in X$
, 
 $y\in Y$
, there exist r,
$y\in Y$
, there exist r, 
 $s\in \{0,1,2,3\}$
 such that
$s\in \{0,1,2,3\}$
 such that 
 $xN=(df)^rN$
 and
$xN=(df)^rN$
 and 
 $yM=(dfc_3)^sM$
. We also observe that
$yM=(dfc_3)^sM$
. We also observe that 
 $x\in \operatorname {\mathrm {Inn}}(K)$
 if, and only if,
$x\in \operatorname {\mathrm {Inn}}(K)$
 if, and only if, 
 $y\in \operatorname {\mathrm {Inn}}(K)$
. To prove that we can choose
$y\in \operatorname {\mathrm {Inn}}(K)$
. To prove that we can choose 
 $x\in X$
,
$x\in X$
, 
 $y\in Y$
 such that
$y\in Y$
 such that 
 $z=xy^{-1}$
 and
$z=xy^{-1}$
 and 
 $\gamma (yM)=xN$
, it is enough to prove that for such a choice we have that
$\gamma (yM)=xN$
, it is enough to prove that for such a choice we have that 
 $z=xy^{-1}$
 and
$z=xy^{-1}$
 and 
 $r=s$
. Note that if
$r=s$
. Note that if 
 $x\in N$
, then
$x\in N$
, then 
 $r=0$
; if
$r=0$
; if 
 $x\in \operatorname {\mathrm {Inn}}(K)\setminus N$
, then
$x\in \operatorname {\mathrm {Inn}}(K)\setminus N$
, then 
 $r=2$
; and if
$r=2$
; and if 
 $x\notin \operatorname {\mathrm {Inn}}(K)$
, then
$x\notin \operatorname {\mathrm {Inn}}(K)$
, then 
 $r\in \{1,3\}$
. Analogously, if
$r\in \{1,3\}$
. Analogously, if 
 $y\in M$
, then
$y\in M$
, then 
 $s=0$
; if
$s=0$
; if 
 $y\in \operatorname {\mathrm {Inn}}(K)\setminus M$
, then
$y\in \operatorname {\mathrm {Inn}}(K)\setminus M$
, then 
 $s=2$
; and if
$s=2$
; and if 
 $y\notin \operatorname {\mathrm {Inn}}(K)$
, then
$y\notin \operatorname {\mathrm {Inn}}(K)$
, then 
 $s\in \{1,3\}$
. We also have that
$s\in \{1,3\}$
. We also have that 
 $tM=(dfu_2)^2M$
 and that
$tM=(dfu_2)^2M$
 and that 
 $tN=N$
, as
$tN=N$
, as 
 $t\in \operatorname {\mathrm {Inn}}(K)$
,
$t\in \operatorname {\mathrm {Inn}}(K)$
, 
 $t\in N$
, but
$t\in N$
, but 
 $t\notin M$
. If
$t\notin M$
. If 
 $x\in N$
 and
$x\in N$
 and 
 $y\in M$
, we can choose
$y\in M$
, we can choose 
 $r=s=0$
 and
$r=s=0$
 and 
 $\gamma (yM)=xN$
. Suppose that
$\gamma (yM)=xN$
. Suppose that 
 $x\in N$
 and
$x\in N$
 and 
 $y\notin M$
. Then
$y\notin M$
. Then 
 $y\in \operatorname {\mathrm {Inn}}(K)$
 and so,
$y\in \operatorname {\mathrm {Inn}}(K)$
 and so, 
 $xN=N$
 and
$xN=N$
 and 
 $yM=(dfu_2)^2M$
. Consequently,
$yM=(dfu_2)^2M$
. Consequently, 
 $xtN=N$
,
$xtN=N$
, 
 $ytN=N$
, and
$ytN=N$
, and 
 $\gamma (ytN)=xtN$
. Suppose that
$\gamma (ytN)=xtN$
. Suppose that 
 $x\notin N$
 and
$x\notin N$
 and 
 $y\in M$
. We have that
$y\in M$
. We have that 
 $x\in \operatorname {\mathrm {Inn}}(K)$
 and so,
$x\in \operatorname {\mathrm {Inn}}(K)$
 and so, 
 $xN=(df)^2N$
 and
$xN=(df)^2N$
 and 
 $yM=M$
. It follows that
$yM=M$
. It follows that 
 $xtN=(df)^2N$
 and
$xtN=(df)^2N$
 and 
 $ytM=(dfu_2)^2M$
, that is,
$ytM=(dfu_2)^2M$
, that is, 
 $\gamma (ytM)=xtN$
. Suppose that x,
$\gamma (ytM)=xtN$
. Suppose that x, 
 $y\in \operatorname {\mathrm {Inn}}(K)$
,
$y\in \operatorname {\mathrm {Inn}}(K)$
, 
 $x\notin N$
, and
$x\notin N$
, and 
 $y\notin M$
. Then
$y\notin M$
. Then 
 $xN=(df)^2N$
,
$xN=(df)^2N$
, 
 $yM=(dfu_2)^2M$
, and
$yM=(dfu_2)^2M$
, and 
 $\gamma (yM)=xN$
. Finally, suppose that x and
$\gamma (yM)=xN$
. Finally, suppose that x and 
 $y\notin M$
. Then
$y\notin M$
. Then 
 $xN=(df)^rN$
 and
$xN=(df)^rN$
 and 
 $yM=(dfu_2)^sM$
, with r,
$yM=(dfu_2)^sM$
, with r, 
 $s\in \{1,3\}$
. If
$s\in \{1,3\}$
. If 
 $r=s$
, then
$r=s$
, then 
 $\gamma (yM)=xN$
. If
$\gamma (yM)=xN$
. If 
 $r\ne s$
, then
$r\ne s$
, then 
 $xtN=(df)^rN$
 and
$xtN=(df)^rN$
 and 
 $ytM=(dfu_2)^{s+2}M$
, with
$ytM=(dfu_2)^{s+2}M$
, with 
 $r\equiv s+2\pmod {4}$
. Thus
$r\equiv s+2\pmod {4}$
. Thus 
 $\gamma (ytM)=xtN$
.
$\gamma (ytM)=xtN$
.
It follows that X, Y satisfy all conditions of Theorem A. We can also check with GAP [7] all this information about these subgroups.
Acknowledgements
We would like to thank the referee for his thoughtful comments toward improving our article.
 
  
 
 
 
 
 
 
 
 
 
 

