Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:18:18.506Z Has data issue: false hasContentIssue false

Hydrodynamics of a quantum vortex in the presence of twist

Published online by Cambridge University Press:  12 October 2020

Matteo Foresti
Affiliation:
Department of Mathematics and Applications, University of Milano-Bicocca, Via Cozzi 55, 20125Milano, Italy
Renzo L. Ricca*
Affiliation:
Department of Mathematics and Applications, University of Milano-Bicocca, Via Cozzi 55, 20125Milano, Italy BDIC, Beijing U. Technology, 100 Pingleyuan, Beijing100124, PR China
*
Email address for correspondence: renzo.ricca@unimib.it

Abstract

The equations governing the evolution of quantum vortex defects subject to twist are derived in standard hydrodynamic form. Vortex defects emerge as solutions of the Gross–Pitaevskii equation, that by Madelung transformation admits a hydrodynamic description. Here, we consider a vortex defect subject to superposed twist due to the rotation of the phase of the wave function. We prove that, when twist is present, the corresponding Hamiltonian is non-Hermitian and determine the effect of twist on the energy expectation value of the system. We show how twist diffusion may trigger linear instability, a property directly related to the non-Hermiticity of the Hamiltonian. We derive the correct continuity equation and, by applying defect theory, we obtain the correct momentum equation. Finally, by coupling twist kinematics and vortex dynamics we determine the full set of hydrodynamic equations governing quantum vortex evolution subject to twist.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aharonov, B. & Bohm, D. 1959 Significance of the electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485491.CrossRefGoogle Scholar
Andrews, M. R., Townsend, C. G., Miesner, H.-J., Durfee, D. S., Kurn, D. M. & Ketterle, W. 1997 Observation of interference between two Bose condensates. Science 275, 637641.CrossRefGoogle ScholarPubMed
Barenghi, C. F. & Parker, N. G. 2016 A Primer on Quantum Fluids. Springer.CrossRefGoogle Scholar
Bender, C. M. 2007 Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 9471018.CrossRefGoogle Scholar
Cornell, E. A. & Wieman, C. E. 1998 The Bose–Einstein condensate. Sci. Am. 278, 4045.CrossRefGoogle Scholar
El-Ganainy, R., Makris, K. G., Khajavikhan, M., Musslimani, Z. H., Rotter, S. & Christodoulides, D. N. 2018 Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 1119.CrossRefGoogle Scholar
Foresti, M. & Ricca, R. L. 2019 Defect production by pure twist induction as Aharonov-Bohm effect. Phys. Rev. E 100, 023107.CrossRefGoogle ScholarPubMed
Gong, Z., Ashida, Y., Kawabata, K., Takasan, K., Higashikawa, S. & Ueda, M. 2018 Topological phases of non-hermitian systems. Phys. Rev. B 8, 133.Google Scholar
Gross, E. P. 1961 Structure of a quantized vortex in boson systems. Nuovo Cim. 20, 454477.CrossRefGoogle Scholar
Hannay, J. H. 1998 Cyclic rotations, contractibility, and Gauss–Bonnet. J. Phys. A: Math. Gen. 31, L321324.CrossRefGoogle Scholar
Kedia, H., Kleckner, D., Scheeler, M. W. & Irvine, W. T. M. 2018 Helicity in superfluids: existence and the classical limit. Phys. Rev. Fluids 3, 104702.CrossRefGoogle Scholar
Klapper, I. & Tabor, M. 1994 A new twist in the kinematics and elastic dynamics of thin filaments and ribbons. J. Phys. A: Math. Gen. 27, 49194924.CrossRefGoogle Scholar
Kleinert, H. 2008 Multivalued Fields in Condensed Matter, Electromagnetism and Gravitation. World Scientific.CrossRefGoogle Scholar
Leanhardt, A. E., Görlitz, A., Chikkatur, A. P., Kielpinski, D., Shin, Y., Pritchard, D. E. & Ketterle, W. 2002 Imprinting vortices in a Bose–Einstein condensate using topological phases. Phys. Rev. Lett. 89, 14.CrossRefGoogle Scholar
Madelung, V. E. 1926 Quantentheorie in hydrodynamischer form. Z. Physik 40, 322326.CrossRefGoogle Scholar
Matthews, M. R., Anderson, B. P., Haljan, P. C., Hall, D. S., Wieman, C. E. & Cornell, E. A. 1999 Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 24982501.CrossRefGoogle Scholar
Pitaevskii, L. P. 1961 Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–54.Google Scholar
Pitaevskii, L. P. & Stringari, S. 2016 Bose–Einstein Condensation and Superfluidity. Oxford University Press.CrossRefGoogle Scholar
Salman, H. 2017 Helicity conservation and twisted Seifert surfaces for superfluid vortices. Proc. R. Soc. A 473, 20160853.CrossRefGoogle ScholarPubMed
dos Santos, F. E. A. 2016 Hydrodynamics of vortices in Bose–Einstein condensates: a defect-gauge field approach. Phys. Rev. A 94, 063633.CrossRefGoogle Scholar
Wyatt, R. E. 2005 Quantum Dynamics with Trajectories. Springer.Google Scholar
Zuccher, S. & Ricca, R. L. 2017 Relaxation of twist helicity in the cascade process of linked quantum vortices. Phys. Rev. E 95, 053109.CrossRefGoogle ScholarPubMed
Zuccher, S. & Ricca, R. L. 2018 Twist effects in quantum vortices and phase defects. Fluid Dyn. Res. 50, 113.CrossRefGoogle Scholar