Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-31T12:09:41.891Z Has data issue: true hasContentIssue true

The structural glaciology of Kongsvegen, Svalbard, and its role in landform genesis

Published online by Cambridge University Press:  20 January 2017

Neil F. Glasser
Affiliation:
School of Biological and Earth Sciences, Liverpool John Moors University, Byrom Street, Liverpool L3 3AF, England
Michael J. Hambrey
Affiliation:
Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, Ceredigion SY23 3DB, Wales
Kevin R. Crawford
Affiliation:
Department of Environmental and Biological Studies, Liverpool Hope University College, Hope Park, Liverpool L16 9JD, England
Matthew R. Bennett
Affiliation:
School of Earth and Environmental Sciences, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4AW, England
David Huddart
Affiliation:
School of Education and Community Studies, Liverpool John Moores University, I. M. Marsh Campus, Liverpool L17 6BD, England
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mapping of the structural glaciology of Kongsvegen, Svalbard, reveals evidence for four main deformational structures. These are stratification, longitudinal foliation, thrusts and crevasse traces. These structures are considered in terms of their contribution to debris entrainment, transport and subsequent landform development. Stratification is associated with small amounts of supraglacial debris that has been folded with flow-parallel axes; longitudinal foliation in places incorporates basal glacial sediments along folds with flow-parallel axes; and thrusts transport basal debris to the glacier surface. Crevasse traces are not significant in terms of debris entrainment. The entrainment of basal debris along longitudinal foliation is not a universally recognised process. At Kongsvegen this process is attributed to the development of a transposition foliation, in combination with incorporation of debris-rich basal ice or soft basal sediment in the fold complex. Mapping of the landforms in the proglacial area shows that debris incorporated along longitudinal foliation is released as “foliation-parallel ridges” and that transverse ridges mark debris-bearing thrusts. The role of longitudinal foliation in landform development has never been documented in this manner. Although the preservation potential of such ridges may be limited, recognition of foliation-parallel ridges in the Pleistocene landform record has important implications for the interpretation of the dynamics of former ire masses.

Type
Research Article
Copyright
Copyright © International Glaciological Society 1998

References

Aario, R. 1977. Associations of flutings, drumlins, hummocks and transverse ridges. GeoJournal, 1, 6572.Google Scholar
Allen, C. R., Kamb, W. B., Meier, M. F. and Sharp, R. P.. 1960. Structure of the lower Blue Glacier. Washington. J. Geol., 68(6), 601625.Google Scholar
Benn, D. I. and Ballantyne, C. K.. 1994. Reconstructing the transport history of glacigenic sediments: a new approach based on the co-variance of clast form indices. Sediment. Geol., 91(14), 215227.Google Scholar
Bennett, M. R., Hambrey, M. J., Huddart, D. and Ghienne, J. F.. 1996a. The formation of geometrical ridge networks (‘crevasse-fill’ ridges), Kongsvegen. Svalbard. J. Quat. Sci., 11(6), 430438.3.0.CO;2-J>CrossRefGoogle Scholar
Bennett, M. R., Huddart, D., Hambrey, M. J. and Ghienne, J. F.. 1996b. Moraine development at the high-Arctic valley glacier Pedersenbreen, Svalbard. Geogr. Ann.,78A(4), 209222.Google Scholar
Björnsson, H. and 6 others. 1996. The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. J. Glaciol., 42(140), 2332.CrossRefGoogle Scholar
Boulton, G. S. 1976. The origin of glacially fluted surfaces — observations and theory. J. Glaciol., 17(76), 287309.Google Scholar
Casassa, G. 1992. Foliation on Tyndall Glacier, southern Patagonia. Bull. Glacier Res. 10, 7577.Google Scholar
Clark, C. D. 1993. Mega-scale glacial lienations and cross-cutting ice-flow landforms. Earth Surface Processes and Landforms, 18(1), 129.CrossRefGoogle Scholar
Dyson, J. L. 1952. Ice-ridged moraines and their relation in glaciers. Am. J. Sci.,. 250(3), 204211.Google Scholar
Elverhøi, A., Liestøl, O. and Nagy, J.. 1980. Glacial erosion, sedimentation and microfauna In the inner part of Kongsfjorden, Spitsbergen. Nor. Polarinst. Skr. 172, 3361.Google Scholar
Gordon, J. E., Whalley, W. B., Gellatly, A. F. and Vere, D. M.. 1992. The formation of glacial tintes: assessment of models with evidence from Lyngsdalen, north Norway. Quat. Sci. Rev., 11(78), 709731.Google Scholar
Gravenor, C. P. and Meneley, W. A.. 1958. Glacial flutings in central and northern Alberta. Am. J. Sci., 256(10), 715728.CrossRefGoogle Scholar
Hagen, J. O. and A. Sætrang. 1991. Radio-echo soundings of sub-polar glaciers with low-frequency radar. Polar Res., 9(1), 99107.CrossRefGoogle Scholar
Hagen, J. O., Liest, O.øl. F. Roland and T. Jørgensen. 1993. Glacier atlas of Svalbard and Jan Mayen. Nor. Polarinst. Medd. 129.Google Scholar
Hambrey, M. J. 1975. The origin of foliation in glaciers: evidence from some Norwegian examples. J. Glaciol., 14(70). 181185.CrossRefGoogle Scholar
Hambrey, M. J. 1977. Foliation, minor folds and strain In glacier ice. Tectanophysics, 39(13), 397416.Google Scholar
Hambrey, M. J. and Dowdeswell, J. A.. 1997. Structural evolution of a surge-type polythermal glacier: Hessbreen, Svalbard. Ann. Glaciol., 24, 375381.Google Scholar
Hambrey, M. J. and Huddart, D.. 1995. Englacial and proglacial glaciotectonic processes at the snout of a thermally complex glacier in Svalbard. J. Quat. Sci., 10(4), 313326.CrossRefGoogle Scholar
Hambrey, M. J. and Milnes, A. G.. 1975. Boudinage in glacier ice — some examples. J. Glaciol., 14(72), 383393.Google Scholar
Hambrey, M. J. and Müller, F. 1978. Structures and ice deformation in the White Glacier, Axel Heiberg Island, Northwest Territories, Canada. J. Glaciol., 20(82), 4166.Google Scholar
Hambrey, M. J., Dowdeswell, J. A., Murray, T. and Porter, P. R.. 1996. Thrusting and debris entrainment In a surging glacier: Bakaninbreen, Svalbard. Ann. Glaciol., 22, 241248.Google Scholar
Hambrey, M. J., Huddart, D., Bennett, M. R. and Glasser, N. F.. 1997. Genesis of ‘hummocky moraines’ by thrusting in glacier ice: evidence from Svalbard and Britain. J. Geol. Soc., London, 153(4), 623632.Google Scholar
Hambrey, M. J., Bennett, M. R., Dowdeswell, J. A., Glasser, N. F. and Huddart, D.. In press. Debris-entrainment In polythermal valley glaciers. J. Glaciol. Google Scholar
Heikkinen, O. and Tikkanen, M.. 1979. Glacial flutings in northern Finnish Lapland, Fennia, 157(1), 1—12.Google Scholar
Hisdal, V. 1976. Geography of Svalbard. Oslo, Norsk Polarinstitutt. (Polarhåndbok 2.)Google Scholar
Hooke, R. LeB. and Hudleston, P. J.. 1978. Origin of foliation in glaciers. J. Glaciol., 20(83), 285299.Google Scholar
Hoppe, G. and Schytt, V.. 1953. Some observations on fluted moraine surfaces, Geogr. Ann., 35(2), 105115.Google Scholar
Huddart, D. and Hambrey, M. J.. 1996. Sedimentary and tectonic development of a high-Arctic, thrust-moraine complex: Comfortlessbreen, Svalbard. Boreas, 25(4), 227243.Google Scholar
Hudleston, P. J. and LeB, R. Hooke. 1980. Cumulative deformation In the Barnes Ice Cap and implications for the development of foliation. Tectonophysics, 66(13), 127146.Google Scholar
Karlén, W. 1981. Flutes on bare bedrock. J. Glaciol., 27(95), 190192.Google Scholar
Kirkbride, M. and Spedding, N.. 1996. The influence of englacial drainage on sediment-transport pathways and till texture of temperate valley glaciers. Ann. Glaciol., 22, 160166.Google Scholar
Lawson, W. J., Sharp, M. J. and Hambrey, M. J.. 1994. The structural geology of a surge-type glacier. J. Struct. Geol., 16(10), 14471462.Google Scholar
Lefauconnier, B., Hagen, J. O. and Rudant, J. P.. 1994. Flow speed and calving rate of Kongsbreen glacier. Svalbard, using SPOT images. Polar Res., 13(1), 5965.Google Scholar
Liestøl, O. 1977. Setevatnet, a glacier dammed lake In Spitsbergen. Nor. Polarinst. Årbok 1975, 3135.Google Scholar
Liestøl, O. 1988. The glaciers in the Kongsfjorden area, Spitsbergen. Nor. Geogr. Tidsskr., 42(4), 231238.Google Scholar
Melvold, K. 1992. Studie av brebevegelse på Kangsvegen og Kronebreen, Svalbard. Oslo, Universitetet i Oslo. (Rapportserie i Naturgeografi 1.)Google Scholar
Paul, M. A. and Evans, H.. 1974. Observations on the internal structure and origin of some flutes in glacio-fluvial sediments, Blomstrandbreen, north-west Spitsbergen. J. Glaciol., 13(69), 393400.Google Scholar
Powers, M. C. 1953. A new roundness scale for sedimentary particles. J. Sediment. Petrol., 23(2), 117119.CrossRefGoogle Scholar
Prest, V. K. 1968. Nomenclature of moraines and ice-flow features as applied to the glacial map of Canada. Geol. Surv. Can. Pap. 6757.Google Scholar
Ragan, D. M. 1969. Structures at the base of an ice fall. J. Geol., 77(6), 647667.Google Scholar
Raymond, C. F. 1987. How do glaciers surge? A review. J. Geophys. Res., 92 (B9), 91219134.Google Scholar
Rose, J. 1987. Drumlins as part of a glacier bedform continuum, In Menzies, J. and Rose, J., eds. Drumlin Symposium. Rotterdam, A. A. Balkema, 103—116.Google Scholar
Rose, J. 1989. Glacier stress patterns and sediment transfer associated with the formation of superimposed flutes. Sediment. Geol., 62(34), 151176.Google Scholar
Schytt, V. 1963. Correspondence. Fluted moraine surfaces. J. Glaciol., 4(36), 825827.Google Scholar
Sharp, M. 1985. “Crevasse-fill” ridges--a landform type characteristic of surging glaciers? Geogr. Ann., 67A(34), 213220.Google Scholar

A correction has been issued for this article: