1 A counterexample to [Reference Moreira and Richter3, Theorem 7.1]
We begin by presenting the counterexample to [Reference Moreira and Richter3, Theorem 7.1] provided to us by Zhengxing Lian and Jiahao Qiu. We will use common terminology about nilmanifolds and nilsystems as reviewed in [Reference Moreira and Richter3, §3].
Theorem 7.1. (From [Reference Moreira and Richter3])
Let
$k\in {\mathbb {N}}$
, let X be a connected nilmanifold and let
${R:X\to X}$
be an ergodic nilrotation. Define
$S:= R\times R^2\times \cdots \times R^k$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqn1.png?pub-status=live)
For almost every
$x\in X$
,
$\sigma (Y_x, S)=\sigma (X,R)$
.
Counterexample. Let
$k=2$
and let
$(X,R)$
be the skew-product system given by
$R:(x,y)\mapsto (x+\alpha ,y+x)$
on
$\mathbb {T}^2$
for some irrational
$\alpha $
. This system can be realized as an ergodic nilsystem (see [Reference Moreira and Richter3, Example 7.2]). For any point
$(x,y)\in X$
let
$Y_{(x,y)}$
be the orbit closure of the diagonal point
$(x,y,x,y)\in X^2$
under the map
$S=R\times R^2$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqnu1.png?pub-status=live)
If
$x,\alpha ,1$
are linearly independent over
$\mathbb {Q}$
(which happens almost surely) then it follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqn2.png?pub-status=live)
Therefore the nilsystem
$(Y_{(x,y)},S)$
is isomorphic to the nilsystem
$(\mathbb {T}^3,\tau _{x})$
, where
$\tau _{x}(z,w,\tilde w)=(z+\alpha ,w+z+x,\tilde w+4z+2x+\alpha )$
. Consider the function
$f:\mathbb {T}^3\to \mathbb {C}$
described by
$f(z,w,\tilde w)=e(\tilde w-4w)$
, where
$e(z):=e^{2\pi iz}$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqnu2.png?pub-status=live)
This shows that
$\alpha -2x$
is an eigenvalue of the system
$(Y_{(x,y)},S)$
, but not of the system
$(X,R)$
, so
$\sigma (Y_{(x,y)},R\times T^2)\not \subseteq \sigma (X,S)$
for almost every
$(x,y)\in X$
.
2 Revised version of [Reference Moreira and Richter3, Theorem 7.1]
The above example shows that [Reference Moreira and Richter3, Theorem 7.1] is not correct as stated. Here is a corrected version.
Revised Theorem 7.1. Let
$k\in {\mathbb {N}}$
, let X be a connected nilmanifold and let
$R:X\to X$
be an ergodic nilrotation. Define
$S:= R\times R^2\times \cdots \times R^k$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqn3.png?pub-status=live)
For any
$\theta \in [0,1)$
, if
$\theta \notin \sigma (X,R)$
then for almost every
$x\in X$
we have
$\theta \notin \sigma (Y_x, S)$
.
Remark 2.1. The difference between the (incorrect) statement of Theorem 7.1 in [Reference Moreira and Richter3] and the (correct) statement of Revised Theorem 7.1 above is that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqnu3.png?pub-status=live)
has been replaced with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqnu4.png?pub-status=live)
In other words, the full measure set of x is now allowed to depend on
$\theta $
.
Proof of Revised Theorem 7.1
Given a nilpotent Lie group G, denote by
$G=G_1 \trianglerighteq G_2\trianglerighteq \cdots \trianglerighteq G_{s}\trianglerighteq \{1_G\}$
its lower central series. For
$k\in {\mathbb {N}}$
, define
$H^{(1)}(G),\ldots , H^{(k-1)}(G)$
as
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqn4.png?pub-status=live)
where
$\binom {j}{i}=0$
for
$j<i$
, and let
$H(G)$
be given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqn5.png?pub-status=live)
Also, for a co-compact lattice
$\Gamma \subset G$
define
$\Delta (G,\Gamma ):=H(G)\cap \Gamma ^k$
. Since
$H(G)$
is a rational subgroup of
$G^k$
, it follows from [Reference Leibman2, Lemma 1.11] that
$\Delta (G,\Gamma )$
is a uniform and discrete subgroup of
$H(G)$
. Define the nilmanifold
$Y(G,\Gamma ):=H(G)/\Delta (G,\Gamma )$
. Note that we can naturally identify
$Y(G,\Gamma )$
with a subnilmanifold of
$(G/\Gamma )^k$
.
For
$b\in G$
, define
$R_b:G/\Gamma \to G/\Gamma $
to be the map
$R_b(g\Gamma )=(bg)\Gamma $
and let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqn6.png?pub-status=live)
For
$x=g\Gamma \in G/\Gamma $
define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqn7.png?pub-status=live)
It was shown in [Reference Moreira and Richter3, Proposition 7.5, part (iv)] that for almost every
$x=g\Gamma \in G/\Gamma $
the map
$R_{g^{-1}}\times \cdots \times R_{g^{-1}}: (G/\Gamma )^k\to (G/\Gamma )^k$
is an isomorphism from the nilsystem
$(Y_x, S_a)$
to the nilsystem
$(Y(G,\Gamma ),S_{g^{-1}ag})$
.
Suppose now that
$X=G/\Gamma $
is the system in the statement of the theorem and let
$a\in ~G$
be such that
$R=R_a$
. Take
$\theta \in [0,1)$
. Our goal is to show that if
$\theta \notin \sigma (X,R)$
then
${\theta \notin \sigma (Y_x, S_a)}$
for almost every
$x\in X$
. Let us first deal with the case when
$\theta $
is irrational.
Observe that
$\theta $
is not an eigenvalue of
$(X,R_a)$
if and only if the product system
$(X, R_a)\times (\mathbb {T},R_{\theta })$
is ergodic, where
$R_{\theta }\colon t\mapsto t+\theta $
is rotation by
$\theta $
. Notice that
${X\times \mathbb {T}=(G\times \mathbb {R})/(\Gamma \times \mathbb {Z})}$
is a nilmanifold too, and hence
$(X, R_a)\times (\mathbb {T},R_{\theta })$
is a nilsystem. In accordance with (2.4) and (2.5) let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqnu5.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqnu6.png?pub-status=live)
As was mentioned above, for almost every
$(x,t)=(g\Gamma ,t)\in X\times \mathbb {T}$
, the nilsystem
$(Y_{(x,t)},S_{(a,\alpha )})$
is isomorphic to
$(Y(G\times \mathbb {R},\Gamma \times \mathbb {Z}),S_{(g^{-1}ag,\theta )})$
.
We claim that
$Y(G\times \mathbb {R},\Gamma \times \mathbb {Z})\cong Y(G,\Gamma )\times Y(\mathbb {R},\Gamma )$
. Assuming this claim for now, it follows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqnu7.png?pub-status=live)
Recall that any transitive nilsystem is ergodic. Since
$(Y_{(x,t)},S_{(a,\theta )})$
is transitive by definition, it follows that it is ergodic, which implies that
$(Y_x,S_{a})\times (\mathbb {T},R_\theta )$
is ergodic for almost every
$x\in X$
. However,
$(Y_x,S_{a})\times (\mathbb {T},R_\theta )$
can only be ergodic if
$\theta $
is not in the discrete spectrum of
$(Y_x,S_{a})$
, which finishes the proof that
$\theta \notin \sigma (Y_x, S_a)$
for almost every
$x\in X$
.
It remains to show that
$Y(G\times \mathbb {R},\Gamma \times \mathbb {Z})\cong Y(G,\Gamma )\times Y(\mathbb {R},\Gamma )$
. Note that
${{H^{(i)}(\mathbb {R})=\{0\}^k}}$
for all
$i\geq 2$
, so that
$H(\mathbb {R})=\{(t,2t,\ldots ,kt):t\in \mathbb {R}\}$
. More generally, for any G we have
$H^{(i)}(G\times \mathbb {R})=H^{(i)}(G)\times \{0\}^k$
whenever
$i\geq 2$
. This implies that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqnu8.png?pub-status=live)
Finally, since
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqnu9.png?pub-status=live)
the claim
$Y(G\times \mathbb {R},\Gamma \times \mathbb {Z})\cong Y(G,\Gamma )\times Y(\mathbb {R},\Gamma )$
follows.
Lastly, we deal with the case when
$\theta =p/q\in (0,1)$
is rational. Recall that
$S_a= R_a\times R_a^2\times \cdots \times R_a^k$
and
$Y_x:=\overline {\{S_a^n(x,x,\ldots , x): n\in \mathbb {Z}\}}$
and that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqn8.png?pub-status=live)
for all
$x=g\Gamma \in X'$
, where
$X'$
is some full measure subset of X. Observe that (2.6) implies
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqn9.png?pub-status=live)
for all
$x=g\Gamma \in X'$
. Then define
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqnu10.png?pub-status=live)
Since X is connected and
$(X, R_a)$
is ergodic, the nilsystem
$(X, R_{a}^q)$
is ergodic. This implies that there exists a full measure set
$X"\subset X$
such that for all
$x=g\Gamma \in X"$
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqn10.png?pub-status=live)
Combining (2.7) and (2.8), we see that for any
$x\in X'\cap X"$
we have
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqnu11.png?pub-status=live)
Since
$(Y_x^{(q)}, S_a^q)$
is transitive by definition, it must be ergodic, and thus it follows that for all
$x\in X'\cap X"$
the system
$(Y_x, S_a^q)$
is ergodic. We conclude that
$\theta =p/q$
is not an eigenvalue of
$(Y_x, S_a^q)$
and this finishes the proof.
3 Revised proof of [Reference Moreira and Richter3, Theorem 4.2]
In light of the fact that [Reference Moreira and Richter3, Theorem 7.1] is incorrect, we need to provide a new proof for [Reference Moreira and Richter3, Theorem 4.2] to ensure that all the main results presented in [Reference Moreira and Richter3] are still correct. With the same notation as in [Reference Moreira and Richter3], let us recall the statement of [Reference Moreira and Richter3, Theorem 4.2].
Theorem 4.2. Let
$k\in {\mathbb {N}}$
, let G be an s-step nilpotent Lie group, and let
$\Gamma $
be a uniform and discrete subgroup of G such that
$X=G/\Gamma $
is a connected nilmanifold. Let
${R:X\to X}$
be an ergodic niltranslation on X. Define
$S:= R\times R^2\times \cdots \times R^k$
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506022915223-0901:S0143385723000615:S0143385723000615_eqnu12.png?pub-status=live)
Then
$\sigma (X,R)=\sigma (Y_{X^\Delta }, S)$
, where
$\sigma (X,R)$
denotes the spectrum of the nilsystem
$(X,R)$
and
$\sigma (Y_{X^\Delta }, S)$
denotes the spectrum of the nilsystem
$(Y_{X^\Delta }, S)$
.
Proof. Given
$\theta \in \sigma (X,R)$
, let
$f\in L^2(X)$
be an eigenfunction of the system
$(X,R)$
with eigenvalue
$\theta $
. Since the function
$\tilde f\in L^2(Y_{X^\Delta })$
defined by
$\tilde f(x_1,\ldots ,x_k)=f(x_1)$
is an eigenfunction for the system
$(Y_{X^\Delta },S)$
with eigenvalue
$\theta $
, it follows that
$\sigma (X,R)\subseteq \sigma (Y_{X^\Delta },S)$
.
Next we prove the converse inclusion. Let
$\nu $
be the Haar measure of the nilmanifold
$Y_{X^\Delta }$
and let
$\nu _x$
be the Haar measure of the nilmanifold
$Y_x$
defined by (2.1). Observe that the sets
$Y_x$
are precisely the atoms of the invariant
$\sigma $
-algebra of the system
$(Y_{X^\Delta },S)$
. Therefore, the measures
$\nu _x$
form the ergodic decomposition of
$\nu $
.
Let
$\theta \in \sigma (Y_{X^\Delta },S)$
and let
$f\in L^2(Y_{X^\Delta },\nu )$
be an eigenfunction with eigenvalue
$\theta $
, that is, for almost every
$y\in Y_{X^\Delta }$
we have
$Sf(y)=e(\theta )f(y)$
. Since f cannot be
$0 \nu $
-almost everywhere, there exists a positive measure set of
$x\in X$
for which the restriction of f to the system
$(Y_x,\nu _x,S)$
is not the zero function. But for any such x, the restriction of f to the system
$(Y_x,\nu _x,S)$
is an eigenfunction with eigenvalue
$\theta $
. This implies that
$\theta \in \sigma (Y_{X^\Delta },S)$
for all such x. Finally, by invoking Revised Theorem 7.1, we conclude that
$\theta \in \sigma (X,R)$
, finishing the proof.