Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T11:58:06.085Z Has data issue: false hasContentIssue false

Toward affordable and sustainable use of precious metals in catalysis and nanomedicine

Published online by Cambridge University Press:  09 November 2018

Younan Xia
Affiliation:
Georgia Institute of Technology, USA; younan.xia@bme.gatech.edu
Ming Zhao
Affiliation:
Georgia Institute of Technology, USA; mzhao70@gatech.edu
Xue Wang
Affiliation:
University of Toronto, Canada; xxue.wang@utoronto.ca
Da Huo
Affiliation:
Georgia Institute of Technology, USA; da.huo@bme.gatech.edu
Get access

Abstract

Precious metals represent some of the least abundant elements in the earth’s crust. There is an urgent need to maximize the utilization efficiency of these metals and thereby attain affordable and sustainable products. One approach for achieving this goal is based on the development of hollow nanocrystals with a well-controlled surface structure, together with a wall thickness kept below 2 nm, or roughly 10 layers of atoms. The hollow structure eliminates the waste of interior atoms and creates an inner surface, while the controllable surface structures contribute to the optimization of catalytic activity and selectivity. In this article, we begin with a brief introduction to two methods that have been developed for the synthesis of hollow nanocrystals: the first relying on the galvanic replacement with a sacrificial template, and the second involving layer-by-layer deposition of metal atoms followed by etching. We then showcase some remarkable properties and applications of this novel class of nanostructures, including their use as effective catalysts for energy conversion, photoresponsive carriers for controlled release and drug delivery, and theranostic agents. A discussion of the existing barriers to their commercialization is also presented.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article is based on the MRS Medal Lecture “Toward Affordable and Sustainable Use of Noble-Metal Nanocrystals in Catalysis and Nanomedicine,” presented by Younan Xia at the 2017 MRS Fall Meeting in Boston, Mass.

References

World Economic Forum, “Global Future Councils (2018),” https://www.weforum.org/communities/global-future-councils.Google Scholar
Cotton, S.A., Chemistry of Precious Metals (Springer, New York, 2012).Google Scholar
Zereini, F., Wiseman, C.L.S., Platinum Metals in the Environment (Springer, Berlin, Germany, 2015).CrossRefGoogle ScholarPubMed
APMEX, “Platinum Prices,” https://www.apmex.com/spotprices/platinum-price (accessed June 2018).Google Scholar
Scofield, M.E., Liu, H., Wong, S.S., Chem. Soc. Rev. 44, 5836 (2015).CrossRefGoogle Scholar
Shao, M., Chang, Q., Dodelet, J.-P., Chenitz, R., Chem. Rev. 116, 3594 (2016).CrossRefGoogle Scholar
Prior, E., “How Much Gold Is There in the World?” (April 1, 2013), http://www.bbc.com/news/magazine-21969100.Google Scholar
Harden, D.B., Toynbee, J.M.C., Archaeologia 97, 179 (1959).CrossRefGoogle Scholar
Architectural Stained Glass Inc., “A History of Stained Glass,” http://archstglassinc.com/resources/a-brief-history-of-stained-glass.Google Scholar
Faraday, M., Trans. R. Soc. Lond. 147, 145 (1857).CrossRefGoogle Scholar
Yang, X., Yang, M., Pang, B., Madeline, V., Xia, Y., Chem. Rev. 115, 10410 (2015).CrossRefGoogle Scholar
Ishida, T., Haruta, M., Angew. Chem. Int. Ed. Engl. 46, 7154 (2007).CrossRefGoogle Scholar
Kim, D., Jeong, Y.Y., Jon, S., ACS Nano 4, 3698 (2010).Google Scholar
Zhao, M., Wang, X., Yang, X., Gilroy, K.D., Qin, D., Xia, Y., Adv. Mater. 30, 1809156 (2018).Google Scholar
Skrabalak, S.E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C.M., Xia, Y., Acc. Chem. Res. 41, 1587 (2008).CrossRefGoogle Scholar
Zhang, L., Roling, L.T., Wang, X., Vara, M., Chi, M., Liu, J., Choi, S., Park, J., Herron, J.A., Xie, Z., Mavrikakis, M., Xia, Y., Science 349, 412 (2015).CrossRefGoogle Scholar
Wang, X., Figueroa-Cosme, L., Yang, X., Luo, M., Liu, J., Xie, Z., Xia, Y., Nano Lett . 16, 1467 (2016).CrossRefGoogle Scholar
He, D.S., He, D., Wang, J., Lin, Y., Yin, P., Hong, X., Wu, Y., Li, Y., J. Am. Chem. Soc. 138, 1494 (2016).CrossRefGoogle Scholar
Xia, Y., Yang, X., Acc. Chem. Res. 50, 450 (2017).CrossRefGoogle Scholar
Dai, Y., Lu, P., Cao, Z., Campbell, C.T., Xia, Y., Chem. Soc. Rev. 47, 4314 (2018).CrossRefGoogle Scholar
Allen, M.J., Tung, C.C., Kaner, R.B., Chem. Rev. 110, 132 (2010).CrossRefGoogle Scholar
Yin, X., Liu, X., Pan, Y., Walsh, K.A., Yang, H., Nano Lett . 14, 7188 (2014).CrossRefGoogle Scholar
Siril, P.F., Ramos, L., Beaunier, P., Archirel, P., Etcheberry, A., Remita, H., Chem. Mater. 21, 5170 (2009).CrossRefGoogle Scholar
Duan, H., Yan, N., Yu, R., Chang, C., Zhou, G., Hu, H., Rong, H., Niu, Z., Mao, J., Asakura, H., Tanaka, T., Dyson, P.J., Li, J., Li, Y., Nat. Commun. 5, 3093 (2014).CrossRefGoogle Scholar
Kong, X., Xu, K., Zhang, C., Dai, J., Oliaee, S.N., Li, L., Zeng, X., Wu, C., Peng, Z., ACS Catal . 6, 1487 (2016).CrossRefGoogle Scholar
Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M., Nature 458, 872 (2009).CrossRefGoogle Scholar
Sun, Y., Xia, Y., Science 298, 2176 (2002).CrossRefGoogle Scholar
Xia, X., Wang, Y., Ruditskiy, A., Xia, Y., Adv. Mater. 25, 6313 (2013).CrossRefGoogle Scholar
Chen, J., McLellan, J.M., Siekkinen, A., Xiong, Y., Li, Z., Xia, Y., J. Am. Chem. Soc. 128, 14776 (2006).CrossRefGoogle Scholar
Chen, J., Wiley, B., McLellan, J., Xiong, Y., Li, Z., Xia, Y., Nano Lett . 5, 2058 (2005).CrossRefGoogle Scholar
Yang, X., Roling, L.T., Vara, M., Elnabawy, A.O., Zhao, M., Hood, Z.D., Bao, S., Mavrikakis, M., Xia, Y., Nano Lett . 16, 6644 (2016).CrossRefGoogle Scholar
Jin, M., Liu, H., Zhang, H., Xie, Z., Liu, J., Xia, Y., Nano Res . 4, 83 (2011).CrossRefGoogle Scholar
Jin, M., Zhang, H., Xie, Z., Xia, Y., Energy Environ. Sci. 5, 6352 (2012).CrossRefGoogle Scholar
Huang, H., Wang, Y., Ruditskiy, A., Peng, H.-C., Zhao, X., Zhang, L., Liu, J., Ye, Z., Xia, Y., ACS Nano 8, 7041 (2014).CrossRefGoogle Scholar
Xia, X., Xie, S., Liu, M., Peng, H.-C., Lu, N., Wang, J., Kim, M.J., Xia, Y., Proc. Natl. Acad. Sci. U.S.A. 110, 6669 (2013).CrossRefGoogle Scholar
Wang, X., Vara, M., Luo, M., Huang, H., Ruditskiy, A., Park, J., Bao, S., Liu, J., Howe, J., Chi, M., Xie, Z., Xia, Y., J. Am. Chem. Soc. 137, 15036 (2015).CrossRefGoogle Scholar
Huang, H., Ruditskiy, A., Choi, S., Zhang, L., Liu, J., Ye, Z., Xia, Y., ACS Appl. Mater. Interfaces 9, 31203 (2017).CrossRefGoogle Scholar
Wang, X., Luo, M., Huang, H., Chi, M., Howe, J., Xie, Z., Xia, Y., ChemNanoMat 2, 1086 (2016).CrossRefGoogle Scholar
Sun, X., Kim, J., Gilroy, K.D., Liu, J., König, T.A.F., Qin, D., ACS Nano 10, 8019 (2016).CrossRefGoogle Scholar
Sun, X., Yang, X., Zhang, Y., Ding, Y., Su, D., Qin, D., Nanoscale 9, 15107 (2017).CrossRefGoogle ScholarPubMed
Aslam, U., Chavez, S., Linic, S., Nat. Nanotechnol. 12, 1000 (2017).CrossRefGoogle Scholar
Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., Chem. Rev. 105, 1103 (2005).CrossRefGoogle Scholar
Chen, J., Glaus, C., Laforest, R., Zhang, Q., Yang, M., Gidding, M., Welch, M.J., Xia, Y., Small 6, 811 (2010).CrossRefGoogle Scholar
Yavuz, M.S., Cheng, Y., Chen, J., Cobley, C.M., Zhang, Q., Rycenga, M., Xie, J., Kim, C., Song, K.H., Schwartz, A.G., Wang, L.V., Xia, Y., Nat. Mater. 8, 935 (2009).CrossRefGoogle Scholar
Shen, S., Zhu, C., Huo, D., Yang, M., Xue, J., Xia, Y., Angew. Chem. Int. Ed. Engl. 56, 8801 (2017).CrossRefGoogle Scholar
Moon, G.D., Choi, S.-W., Cai, X., Li, W., Cho, E.C., Jeong, U., Wang, L.V., Xia, Y., J. Am. Chem. Soc. 133, 4762 (2011).CrossRefGoogle Scholar
Cheng, H., Huo, D., Zhu, C., Shen, S., Wang, W., Li, H., Zhu, Z., Xia, Y., Biomaterials 178, 517 (2018).CrossRefGoogle Scholar
Sun, T., Wang, Y., Wang, Y., Xu, J., Zhao, X., Vangveravong, S., Mach, R.H., Xia, Y., Adv. Healthc. Mater. 3, 1283 (2014).CrossRefGoogle Scholar
Yang, M., Huo, D., Gilroy, K., Sun, X., Sultan, D., Luehmann, H., Detering, L., Li, S., Qin, D., Liu, Y., Xia, Y., ChemNanoMat 3, 44 (2017).CrossRefGoogle Scholar
Yang, Y., Liu, J., Fu, Z., Qin, D., J. Am. Chem. Soc. 136, 8153 (2014).CrossRefGoogle Scholar
Zhao, M., Figueroa-Cosme, L., Elnabawy, A.O., Vara, M., Yang, X., Roling, L.T., Chi, M., Mavrikakis, M., Xia, Y., Nano Lett. 16, 5310 (2016).CrossRefGoogle Scholar
Zhao, M., Elnabawy, A.O., Vara, M., Xu, L., Hood, Z.D., Yang, X., Gilroy, K.D., Figueroa-Cosme, L., Chi, M., Mavrikakis, M., Xia, Y., Chem. Mater. 29, 9227 (2017).CrossRefGoogle Scholar
Zhao, M., Lang, X., Vara, M., Elnabawy, A.O., Gilroy, K.D., Hood, Z.D., Zhou, S., Figueroa-Cosme, L., Chi, M., Xia, Y., ACS Catal . 8, 6948 (2018).CrossRefGoogle Scholar
Xie, S., Choi, S.-I., Lu, N., Roling, L.T., Herron, J.A., Zhang, L., Park, J., Wang, J., Kim, M.J., Xie, Z., Mavrikakis, M., Xia, Y., Nano Lett . 14, 3570 (2014).CrossRefGoogle Scholar
Park, J., Zhang, L., Choi, S., Roling, L.T., Lu, N., Herron, J.A., Xie, S., Wang, J., Kim, M.J., Mavrikakis, M., Xia, Y., ACS Nano 9, 2635 (2015).CrossRefGoogle Scholar
Wang, X., Choi, S., Roling, L.T., Luo, M., Ma, C., Zhang, L., Chi, M., Liu, J., Xie, Z., Herron, J.A., Mavirkakis, M., Xia, Y., Nat. Commun. 6, 7594 (2015).CrossRefGoogle Scholar
Tan, X., Luo, J., Nan, H., Zou, H., Chen, R., Shu, T., Liu, X., Li, Y., Song, H., Liao, S., Adzic, R.R., J. Am. Chem. Soc. 138, 1575 (2016).Google Scholar
Vara, M., Wang, X., Howe, J., Chi, M., Xia, Y., ChemNanoMat 4, 112 (2018).CrossRefGoogle Scholar
Vara, M., Roling, L.T., Wang, X., Elnabawy, A.O., Hood, Z.D., Chi, M., Mavrikakis, M., Xia, Y., ACS Nano 11, 4571 (2017).CrossRefGoogle Scholar
Niu, G., Ruditskiy, A., Vara, M., Xia, Y., Chem. Soc. Rev. 44, 5806 (2015).CrossRefGoogle Scholar
Zhang, L., Xia, Y., Adv. Mater. 26, 2600 (2014).CrossRefGoogle Scholar
Zhang, L., Niu, G., Lu, N., Wang, J., Tong, L., Wang, L., Kim, M.J., Xia, Y., Nano Lett . 14, 6626 (2014).CrossRefGoogle Scholar
Niu, G., Zhou, M., Yang, X., Park, J., Lu, N., Wang, J., Kim, M.J., Wang, L., Xia, Y., Nano Lett . 16, 3850 (2016).CrossRefGoogle Scholar
Niu, G., Zhang, L., Ruditskiy, A., Wang, L., Xia, Y., Nano Lett. 18, 3879 (2018).CrossRefGoogle Scholar
Wang, H., Niu, G., Zhou, M., Wang, X., Park, J., Bao, S., Chi, M., Cai, Z., Xia, Y., ChemCatChem 8, 1658 (2016).CrossRefGoogle Scholar