Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T12:04:05.977Z Has data issue: false hasContentIssue false

Variability in in vitro fertilization outcomes of prepubertal goat oocytes explained by basic semen analyses

Published online by Cambridge University Press:  15 July 2016

M.J. Palomo*
Affiliation:
Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
R. Quintanilla
Affiliation:
Institut de Recerca i Tecnologia Agroalimentària, Genètica i Millora Animal, 08140 Caldes de Montbui, Barcelona, Spain.
M.D. Izquierdo
Affiliation:
Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
T. Mogas
Affiliation:
Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
M.T. Paramio
Affiliation:
Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
*
All correspondence to: Mª Jesús Palomo Peiró. Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. Tel: +34 935811959. Fax: +34 935812006. E-mail: MariaJesus.Palomo@uab.cat

Summary

This work analyses the changes that caprine spermatozoa undergo during in vitro fertilization (IVF) of in vitro matured prepubertal goat oocytes and their relationship with IVF outcome, in order to obtain an effective model that allows prediction of in vitro fertility on the basis of semen assessment. The evolution of several sperm parameters (motility, viability and acrosomal integrity) during IVF and their relationship with three IVF outcome criteria (total penetration, normal penetration and cleavage rates) were studied in a total of 56 IVF replicates. Moderate correlation coefficients between some sperm parameters and IVF outcome were observed. In addition, stepwise multiple regression analyses were conducted that considered three grouping of sperm parameters as potential explanatory variables of the three IVF outcome criteria. The proportion of IVF outcome variation that can be explained by the fitted models ranged from 0.62 to 0.86, depending upon the trait analysed and the variables considered. Seven out of 32 sperm parameters were selected as partial covariates in at least one of the nine multiple regression models. Among these, progressive sperm motility assessed immediately after swim-up, the percentage of dead sperm with intact acrosome and the incidence of acrosome reaction both determined just before the gamete co-culture, and finally the proportion of viable spermatozoa at 17 h post-insemination were the most frequently selected sperm parameters. Nevertheless, the predictive ability of these models must be confirmed in a larger sample size experiment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amann, R.P. (1989). Can the fertility potential of a seminal sample be predicted accurately? J. Androl. 10, 8998.Google Scholar
Aitken, J.R. (2006). Sperm function tests and fertility. Int. J. Androl. 29, 6975.CrossRefGoogle ScholarPubMed
Berlinguer, F., Madeddu, M., Pasciu, V., Succu, S., Spezzigu, A., Satta, V., Mereu, P., Leoni, G.G. & Naitana, S. (2009). Semen molecular and cellular features: these parameters can reliably predict subsequent ART outcome in a goat model. Reprod. Biol. Endocrinol. 7, 125.Google Scholar
Foote, R.H. (2003). Fertility estimation: a review of past experience and future prospects. Anim. Reprod. Sci. 75, 119–39.CrossRefGoogle ScholarPubMed
Gadea, J. (2005). Sperm factors related to in vitro and in vivo porcine fertility. Theriogenology, 63, 431–44.CrossRefGoogle ScholarPubMed
Gadea, J. & Matas, C. (2000). Sperm factors related to in vitro penetration of porcine oocytes. Theriogenology 54, 1343–57.Google Scholar
Gillan, L., Kroetsch, T., Maxwell, W.M.C. & Evans, G. (2008). Assessment of in vitro sperm characteristics in relation to fertility in dairy bulls. Anim. Reprod. Sci. 103, 201–14.Google Scholar
Graham, J.K. (2001). Assessment of sperm quality: a flow cytometric approach. Anim. Reprod. Sci. 68, 239–47.Google Scholar
Hancock, J.L. (1951). A staining technique for the study of temperature shock in semen. Nature 167, 323–4.CrossRefGoogle Scholar
Januskauskas, A., Johannisson, A. & Rodríguez-Martínez, H. (2003). Subtle membrane changes in cryopreserved bull semen in relation with sperm viability, chromatin structure, and field fertility. Theriogenology 60, 743–58.CrossRefGoogle ScholarPubMed
Jedrzejczak, P., Pawelczyk, L., Taszarek-Hauke, G., Kotwicka, M., Warchoł, W. & Kurpisz, M. (2005). Predictive value of selected sperm parameters for classical in vitro fertilization procedure of oocyte fertilization. Andrologia 37, 7282.CrossRefGoogle ScholarPubMed
Jedrzejczak, P., Taszarek-Hauke, G., Hauke, J., Pawelczyk, L. & Duleba, A.J. (2007). Prediction of spontaneous conception based on semen parameters. Int. J. Androl. 31, 499507.Google Scholar
Kusunoki, H., Yasui, T., Kato, S. & Kanda, S. (1984). Identification of acrosome-reacted goat spermatozoa by a simplified triple-stain technique. Jpn. J. Zootech. Sci. 55, 832–7.Google Scholar
Larsson, B. & Rodríguez-Martínez, H. (2000). Can we use in vitro fertilization tests to predict semen fertility? Anim. Reprod. Sci. 60–61, 327–36.Google Scholar
Martínez-Pastor, F., Tizado, E.J., Garde, J.J., Anel, L., de Paz, P. (2010). Statistical Series: Opportunities and challenges of sperm motility subpopulation analysis. Theriogenology 75, 783–95.CrossRefGoogle Scholar
Mateo Rex, E. (1990). Avances en reproducción caprina. Mundo Ganadero 9, 4151.Google Scholar
Michaeli, M., Peer, S., Anderman, S., Ballas, S. & Ellenbogen, A. (2004). Post swim-up versus original sperm quality, and strict criteria morphology, its influence on fertilization rate in in vitro fertilization program: a pilot study. Int. Cong. Series 1271, 181–4.Google Scholar
Mogas, T., Palomo, M.J., Izquierdo, M.D. & Paramio, M.T. (1997). Developmental capacity of in vitro matured and fertilized oocytes from prepubertal and adult goats. Theriogenology 47, 1189–203Google Scholar
Oehninger, S., Franken, D.R., Sayed, E., Barroso, G. & Kolm, P. (2000). Sperm function assays and their predictive value for fertilization outcome in IVF therapy: a meta analysis. Hum. Reprod. 6, 160–8.Google Scholar
Palomo, M.J., Izquierdo, M.D., Mogas, T. & Paramio, M.T. (1999). Effect of semen preparation on IVF of prepubertal goat oocytes. Theriogenology 51, 927–40.CrossRefGoogle ScholarPubMed
Papadopoulos, S., Hanrahan, J.P., Donovan, A., Duffy, P., Boland, M.P. & Lonergan, P. (2005). In vitro fertilization as a predictor of fertility from cervical insemination of sheep. Theriogenology 63, 150–9.Google Scholar
Parrish, J.J., Susko-Parrish, J.L., Leibfried-Rutledge, M.L., Critser, E.S., Eyestone, W.H. & First, N.L. (1986). Bovine in vitro fertilization with frozen–thawed semen. Theriogenology 25, 591600.CrossRefGoogle ScholarPubMed
Roca, J., Martinez, E., Sánchez-Valverde, M.A., Ruiz, S. & Vázquez, J.M. (1992). Seasonal variations of semen quality in male goats: study of sperm abnormalities. Theriogenology 38, 115–25.Google Scholar
Rodríguez-Martínez, H. (2006). Can we increase the estimative value of semen assessment? Reprod. Dom. Anim. 41, 210.CrossRefGoogle Scholar
Saacke, R.G. (2008). Sperm morphology: Its relevance to compensable and uncompensable traits in semen. Theriogenology 70, 473–8.Google Scholar
Selvaraju, S., Ghosh, J. & Ravindra, J.P., (2009). prognostic value of various spermatological attributes as predictors of zona binding and zona penetration of buffalo (Bubalus bubalis) semen. Reprod. Dom. Anim. 44, 611.Google Scholar
Silva, P.F.N. & Gadella, B.M. (2006). Detection of damage in mammalian sperm cells. Theriogenology 65, 958–78.Google Scholar
Tartaglione, C.M. & Ritta, M.N. (2004). Prognostic value of spermatological parameters as predictors of in vitro fertility of frozen–thawed bull semen. Theriogenology 62, 1245–52.Google Scholar
Tanghe, S., Van Soom, A., Sterckx, V., Maes, D. & de Kruif, A. (2002). Assessment of different sperm quality parameters to predict in vitro fertility of bulls. Reprod. Dom. Anim. 37, 127–32.Google Scholar
Verstegen, J., Iguer-Ouada, M. & Onclin, K. (2002). Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57, 149–79.Google Scholar
Zhang, B.R., Larsson, B., Lundeheim, N., Haard, M.G.H. & Rodriguez-Martinez, H. (1999). Prediction of bull fertility by combined in vitro assessments of frozen–thawed semen from young dairy bulls entering an AI-programme. Int. J. Androl. 2, 253–60.Google Scholar