Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T18:41:31.045Z Has data issue: false hasContentIssue false

State of the art in assisted reproductive technologies for patients with advanced maternal age

Published online by Cambridge University Press:  22 February 2023

Taisiia Yurchuk*
Affiliation:
Institute for Problems of Cryobiology and Cryomedicine (IPC&C) of the National Academy of Sciences of Ukraine and United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair in Cryobiology, Kharkiv, Ukraine
Marina Petrushko
Affiliation:
Institute for Problems of Cryobiology and Cryomedicine (IPC&C) of the National Academy of Sciences of Ukraine and United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair in Cryobiology, Kharkiv, Ukraine ART-Clinic of Reproductive Medicine’, Kharkiv, Ukraine
Barry Fuller
Affiliation:
University College London Division of Surgery and Interventional Science, Royal Free London National Health Service Trust, Royal Free Campus, London, UK
*
Author for correspondence: Taisiia Yurchuk. Taisiia Yurchuk, 23 Pereyaslavska St., Kharkiv, Ukraine 61016. E-mail: taisiya.yur@gmail.com

Summary

According to the World Health Organization, the female reproductive age lasts up to 49 years, but problems with the realization of women’s reproductive rights may arise much earlier. Significant numbers of factors affect the state of reproductive health: socioeconomic, ecological, lifestyle features, the level of medical literacy, and the state of the organization and medical care quality. Among the reasons for fertility decline in advanced reproductive age are the loss of cellular receptors for gonadotropins, an increase in the threshold of sensitivity of the hypothalamic-pituitary system to the action of hormones and their metabolites, and many others. Furthermore, negative changes accumulate in the oocyte genome, reducing the possibility of fertilization, normal development and implantation of the embryo and healthy offspring birth. Another theory of ageing causing changes in oocytes is the mitochondrial free radical theory of ageing. Taking into account all these age-related changes in gametogenesis, this review considers modern technologies aimed at the preservation and realization of female fertility. Among the existing approaches, two main ones can be distinguished: methods allowing the preservation of reproductive cells at a younger age using ART intervention and cryobanking, as well as methods aimed at improving the basic functional state of advanced-age women’s oocytes and embryos.

Type
Review Article
Copyright
© Institute for Problems of Cryobiology and Cryomedicine National Academy of Sciences of Ukraine, 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amable, P. R., Carias, R. B., Teixeira, M. V., da Cruz Pacheco, I., Corrêa do Amaral, R. J., Granjeiro, J. M. and Borojevic, R. (2013). Platelet-rich plasma preparation for regenerative medicine: Optimization and quantification of cytokines and growth factors. Stem Cell Research and Therapy, 4(3), 67. doi: 10.1186/scrt218 CrossRefGoogle ScholarPubMed
Asada, Y., Tokoro, M., Sonohara, M., Fukunaga, N., Hattori, Y. and Hashiba, Y. (2019). Long-term outcomes of freeze-all strategy: A retrospective analysis from a single ART center in Japan. Reproductive Medicine and Biology, 18(2), 173179. doi: 10.1002/rmb2.12264 CrossRefGoogle Scholar
American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. (2013). Assisted Reproductive Technology. National Summary Report. https://www.cdc.gov/art/pdf/2013-report/art_2013_national_summary_report.pdf Google Scholar
Barja, G. (2014). The mitochondrial free radical theory of ageing. Progress in Molecular Biology and Translational Science, 127, 127. doi: 10.1016/B978-0-12-394625-6.00001-5 CrossRefGoogle Scholar
Barritt, J. A., Brenner, C. A., Malter, H. E. and Cohen, J. (2001). Mitochondria in human offspring derived from ooplasmic transplantation. Human Reproduction, 16(3), 513516. doi: 10.1093/humrep/16.3.513 CrossRefGoogle ScholarPubMed
Borini, A., Levi Setti, P. E., Anserini, P., De Luca, R., De Santis, L., Porcu, E., La Sala, G. B., Ferraretti, A., Bartolotti, T., Coticchio, G. and Scaravelli, G. (2010). Multicenter observational study on slow-cooling oocyte cryopreservation: Clinical outcome. Fertility and Sterility, 94(5), 16621668. doi: 10.1016/j.fertnstert.2009.10.029 CrossRefGoogle ScholarPubMed
Bromfield, J. J., Coticchio, G., Hutt, K., Sciajno, R., Borini, A. and Albertini, D. F. (2009). Meiotic spindle dynamics in human oocytes following slow cooling cryopreservation. Human Reproduction, 24(9), 21142123. doi: 10.1093/humrep/dep182 CrossRefGoogle ScholarPubMed
Buderatska, N., Gontar, J., Ilyin, I., Lavrinenko, S., Petrushko, M. and Yurchuk, T. (2020). Does human oocyte cryopreservation affect equally on embryo chromosome aneuploidy? Cryobiology, 93, 3336. doi: 10.1016/j.cryobiol.2020.03.002 CrossRefGoogle ScholarPubMed
Buderatska, N. O and Petrushko, M. P. (2016). Oocytes as alternative to embryos in cryopreservation applied in assisted reproductive technologies. Problems of Cryobiology and Cryomedicine, 26(4), 375382. doi: 10.15407/cryo26.04.375 CrossRefGoogle Scholar
Cakiroglu, Y., Saltik, A., Yuceturk, A., Karaosmanoglu, O., Kopuk, S. Y., Scott, R. T., Tiras, B. and Seli, E. (2020). Effects of intraovarian injection of autologous platelet rich plasma on ovarian reserve and IVF outcome parameters in women with primary ovarian insufficiency. Aging, 12(11), 1021110222. doi: 10.18632/aging.103403 CrossRefGoogle ScholarPubMed
Capalbo, A., Rienzi, L., Cimadomo, D., Maggiulli, R., Elliott, T., Wright, G., Nagy, Z. P. and Ubaldi, F. M. (2014). Correlation between standard blastocyst morphology, euploidy and implantation: An observational study in two centers involving 956 screened blastocysts. Human Reproduction, 29(6), 11731181. doi: 10.1093/humrep/deu033 CrossRefGoogle ScholarPubMed
Chahal, H. S. and Drake, W. M. (2007). The endocrine system and ageing. Journal of Pathology, 211(2), 173180. doi: 10.1002/path.2110 CrossRefGoogle ScholarPubMed
Cil, A. P. and Seli, E. (2013). Current trends and progress in clinical applications of oocyte cryopreservation. Current Opinion in Obstetrics and Gynecology, 25(3), 247254. doi: 10.1097/GCO.0b013e32836091f4 CrossRefGoogle ScholarPubMed
Cimadomo, D., Fabozzi, G., Vaiarelli, A., Ubaldi, N., Ubaldi, F. M. and Rienzi, L. (2018). Impact of maternal age on oocyte and embryo competence. Frontiers in Endocrinology, 9, 327. doi: 10.3389/fendo.2018.00327 CrossRefGoogle ScholarPubMed
Cohen, J., Scott, R., Schimmel, T., Levron, J. and Willadsen, S. (1997). Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet, 350(9072), 186187. doi: 10.1016/S0140-6736(05)62353-7 CrossRefGoogle ScholarPubMed
Cordeiro, F. B., Montani, D. A., Pilau, E. J., Gozzo, F. C., Fraietta, R. and Turco, E. G. L. (2018). Ovarian environment aging: Follicular fluid lipidomic and related metabolic pathways. Journal of Assisted Reproduction and Genetics, 35(8), 13851393. doi: 10.1007/s10815-018-1259-5 CrossRefGoogle ScholarPubMed
Costa, C. M., Santana, F. M., Vilanova, S. M. and Parente, D. M. (2016). Analysis of diseases related to mitochondrial DNA: A literature review. Revista Saúde em Foco, 3, 107123.Google Scholar
Cozzolino, M., Marin, D. and Sisti, G. (2019). New Frontiers in IVF: mtDNA and autologous germline mitochondrial energy transfer. Reproductive Biology and Endocrinology: RB&E, 17(1), 55. doi: 10.1186/s12958-019-0501-z CrossRefGoogle Scholar
Craven, L., Tang, M. X., Gorman, G. S., De Sutter, P. and Heindryckx, B. (2017). Novel reproductive technologies to prevent mitochondrial disease. Human Reproduction Update, 23(5), 501519. doi: 10.1093/humupd/dmx018 CrossRefGoogle ScholarPubMed
Craven, L., Tuppen, H. A., Greggains, G. D., Harbottle, S. J., Murphy, J. L., Cree, L. M., Murdoch, A. P., Chinnery, P. F., Taylor, R. W., Lightowlers, R. N., Herbert, M. and Turnbull, D. M. (2010). Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature, 465(7294), 8285. doi: 10.1038/nature08958 CrossRefGoogle ScholarPubMed
Du, R. and Lei, T. (2020). Effects of autologous platelet-rich plasma injections on facial skin rejuvenation. Experimental and Therapeutic Medicine, 19(4), 30243030. doi: 10.3892/etm.2020.8531 Google ScholarPubMed
ESHRE Guideline Group on Female Fertility Preservation, Anderson, R. A., Amant, F., Braat, D., D’Angelo, A., Chuva de Sousa Lopes, S. M., Demeestere, I., Dwek, S., Frith, L., Lambertini, M., Maslin, C., Moura-Ramos, M., Nogueira, D., Rodriguez-Wallberg, K. and Vermeulen, N. (2020). ESHRE guideline: female fertility preservation. Human Reproduction Open, 2020(4), hoaa052. doi: 10.1093/hropen/hoaa052 Google ScholarPubMed
Fakih, M. H., Shmoury, M. E., Szeptycki, J., dela Cruz, D. B., Lux, C., Verjee, S., Burgess, C. M., Cohn, G. M. and Casper, R. F. (2015). The AUGMENTSM treatment: Physician reported outcomes of the initial global patient experience. Journal of Fertilization: In Vitro, IVF-Worldwide, Reproductive Medicine, Genetics and Stem Cell Biology, 3, 154.Google Scholar
Fanciulli, G., Delitala, A. and Delitala, G. (2009). Growth hormone, menopause and ageing: No definite evidence for ‘rejuvenation’ with growth hormone. Human Reproduction Update, 15(3), 341358. doi: 10.1093/humupd/dmp005 CrossRefGoogle ScholarPubMed
Farimani, M., Heshmati, S., Poorolajal, J. and Bahmanzadeh, M. (2019). A report on three live births in women with poor ovarian response following intra ovarian injection of platelet-rich plasma (PRP). Molecular Biology Reports, 46(2), 16111616. doi: 10.1007/s11033-019-04609-w CrossRefGoogle ScholarPubMed
Fragouli, E., Spath, K., Alfarawati, S., Kaper, F., Craig, A., Michel, C. E., Kokocinski, F., Cohen, J., Munne, S. and Wells, D. (2015). Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLOS Genetics, 11(6), e1005241. doi: 10.1371/journal.pgen.1005241 CrossRefGoogle ScholarPubMed
Fragouli, E. and Wells, D. (2015). Mitochondrial DNA assessment to determine oocyte and embryo viability. Seminars in Reproductive Medicine, 33(6), 401409. doi: 10.1055/s-0035-1567821 Google ScholarPubMed
Franasiak, J. M., Forman, E. J., Hong, K. H., Werner, M. D., Upham, K. M., Treff, N. R. and Scott, R. T., Jr. (2014). The nature of aneuploidy with increasing age of the female partner: A review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertility and Sterility, 101(3), 656663.e1. doi: 10.1016/j.fertnstert.2013.11.004 CrossRefGoogle Scholar
Ge, W., Cheng, S. F., Dyce, P. W., De Felici, M. and Shen, W. (2016). Skin-derived stem cells as a source of primordial germ cell- and oocyte-like cells. Cell Death and Disease, 7(11), e2471. doi: 10.1038/cddis.2016.366 CrossRefGoogle ScholarPubMed
Gharanfoli, S., Shahverdi, A., Dalman, A., Ghaznavi, P., Alipour, H. and Eftekhari-Yazdi, P. (2020). Effect of maternal age on hippo pathway related gene expressions and protein localization pattern in human embryos. Cell Journal, 22(Suppl 1), 7480. doi: 10.22074/cellj.2020.6860 Google ScholarPubMed
Hayashi, K., Ogushi, S., Kurimoto, K., Shimamoto, S., Ohta, H. and Saitou, M. (2012). Offspring from oocytes derived from in vitro primordial germ cell like cells in mice. Science (New York, NY), 338(6109), 971975. doi: 10.1126/science.1226889 CrossRefGoogle ScholarPubMed
Hikabe, O., Hamazaki, N., Nagamatsu, G., Obata, Y., Hirao, Y., Hamada, N., Shimamoto, S., Imamura, T., Nakashima, K., Saitou, M. and Hayashi, K. (2016). Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature, 539(7628), 299303. doi: 10.1038/nature20104 CrossRefGoogle ScholarPubMed
Ishii, T. and Hibino, Y. (2018). Mitochondrial manipulation in fertility clinics: Regulation and responsibility. Reproductive Biomedicine and Society Online, 5, 93109. doi: 10.1016/j.rbms.2018.01.002 CrossRefGoogle ScholarPubMed
Keefe, D., Kumar, M. and Kalmbach, K. (2015). Oocyte competency is the key to embryo potential. Fertility and Sterility, 103(2), 317322. doi: 10.1016/j.fertnstert.2014.12.115 CrossRefGoogle ScholarPubMed
Keefe, D. L., Marquard, K. and Liu, L. (2006). The telomere theory of reproductive senescence in women. Current Opinion in Obstetrics and Gynecology, 18(3), 280285. doi: 10.1097/01.gco.0000193019.05686.49 CrossRefGoogle ScholarPubMed
Kelly, K. and Dumont, L. J. (2019). Frozen platelets. Transfusion and Apheresis Science, 58(1), 2329. doi: 10.1016/j.transci.2018.12.013 CrossRefGoogle ScholarPubMed
Kim, S., Lee, Y., Lee, S. and Kim, T. (2018a). Ovarian tissue cryopreservation and transplantation in patients with cancer. Obstetrics and Gynecology Science, 61(4), 431442. doi: 10.5468/ogs.2018.61.4.431 CrossRefGoogle ScholarPubMed
Kim, S. G., Kim, Y. Y., Park, J. Y., Kwak, S. J., Yoo, C. S., Park, I. H., Sun, H. G., Kim, J. W., Lee, K. H., Park, H. D. and Chi, H. J. (2018b). Early fragment removal on in vitro fertilization day 2 significantly improves the subsequent development and clinical outcomes of fragmented human embryos. Clinical and Experimental Reproductive Medicine, 45(3), 122128. doi: 10.5653/cerm.2018.45.3.122 CrossRefGoogle ScholarPubMed
Kleinveld, D. J. B., Juffermans, N. P. and Noorman, F. (2020). The use of frozen platelets for the treatment of bleeding. In Vincent, J. L. (Ed.), Annual Update in Intensive Care and Emergency Medicine, pp. 317329. Springer, Cham. doi: 10.1007/978-3-030-37323-8_26 Google Scholar
Kuleshova, L., Gianaroli, L., Magli, C., Ferraretti, A. and Trounson, A. (1999). Birth following vitrification of a small number of human oocytes: Case report. Human Reproduction, 14(12), 30773079. doi: 10.1093/humrep/14.12.3077 CrossRefGoogle ScholarPubMed
Kuliev, A., Cieslak, J. and Verlinsky, Y. (2005). Frequency and distribution of chromosome abnormalities in human oocytes. Cytogenetic and Genome Research, 111(3–4), 193198. doi: 10.1159/000086889 CrossRefGoogle ScholarPubMed
Labarta, E., de Los Santos, M. J., Herraiz, S., Escribá, M. J., Marzal, A., Buigues, A. and Pellicer, A. (2019). Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization-a randomized pilot study. Fertility and Sterility, 111(1), 8696. doi: 10.1016/j.fertnstert.2018.09.023 CrossRefGoogle ScholarPubMed
Levi-Setti, P. E., Patrizio, P. and Scaravelli, G. (2016). Evolution of human oocyte cryopreservation: Slow freezing versus vitrification. Current Opinion in Endocrinology, Diabetes, and Obesity, 23(6), 445450. doi: 10.1097/MED.0000000000000289 CrossRefGoogle ScholarPubMed
Liu, Y., Han, M., Li, X., Wang, H., Ma, M., Zhang, S., Guo, Y., Wang, S., Wang, Y., Duan, N., Xu, B., Yin, J. and Yao, Y. (2017). Age-related changes in the mitochondria of human mural granulosa cells. Human Reproduction, 32(12), 24652473. doi: 10.1093/humrep/dex309 CrossRefGoogle ScholarPubMed
May-Panloup, P., Boucret, L., Chao de la Barca, J. M., Desquiret-Dumas, V., Ferré-L’Hotellier, V., Morinière, C., Descamps, P., Procaccio, V. and Reynier, P. (2016). Ovarian ageing: The role of mitochondria in oocytes and follicles. Human Reproduction Update, 22(6), 725743. doi: 10.1093/humupd/dmw028 CrossRefGoogle ScholarPubMed
Melo, P., Navarro, C., Jones, C., Coward, K. and Coleman, L. (2020). The use of autologous platelet-rich plasma (PRP) versus no intervention in women with low ovarian reserve undergoing fertility treatment: A non-randomized interventional study. Journal of Assisted Reproduction and Genetics, 37(4), 855863. doi: 10.1007/s10815-020-01710-z CrossRefGoogle ScholarPubMed
Mobarak, H., Heidarpour, M., Tsai, P. J., Rezabakhsh, A., Rahbarghazi, R., Nouri, M. and Mahdipour, M. (2019). Autologous mitochondrial microinjection; a strategy to improve the oocyte quality and subsequent reproductive outcome during aging. Cell and Bioscience, 9, 95. doi: 10.1186/s13578-019-0360-5 CrossRefGoogle ScholarPubMed
Morohaku, K., Tanimoto, R., Sasaki, K., Kawahara-Miki, R., Kono, T., Hayashi, K., Hirao, Y. and Obata, Y. (2016). Complete in vitro generation of fertile oocytes from mouse primordial germ cells. Proceedings of the National Academy of Sciences of the United States of America, 113(32), 90219026. doi: 10.1073/pnas.1603817113 CrossRefGoogle ScholarPubMed
Moshkdanian, G., Nematollahi-mahani, S. N., Pouya, F. and Nematollahi-mahani, A. (2011). Antioxidants rescue stressed embryos at a rate comparable with co-culturing of embryos with human umbilical cord mesenchymal cells. Journal of Assisted Reproduction and Genetics, 28(4), 343349. doi: 10.1007/s10815-010-9529-x CrossRefGoogle Scholar
Moulavi, F., Akram, R. T., Khorshid Sokhangouy, S. and Hosseini, S. M. (2020) Platelet rich plasma efficiently substitutes the beneficial effects of serum during in vitro oocyte maturation and helps maintain the mitochondrial activity of maturing oocytes. Growth Factors, 38(3–4), 152166. doi: 10.1080/08977194.2021.1900168 CrossRefGoogle ScholarPubMed
Pai, H. D., Baid, R., Palshetkar, N. P., Pai, A., Pai, R. D. and Palshetkar, R. (2021). Oocyte cryopreservation – Current scenario and future perspectives: A narrative review. Journal of Human Reproductive Sciences, 14(4), 340349. doi: 10.4103/jhrs.jhrs_173_21 Google ScholarPubMed
Pantos, K., Simopoulou, M., Pantou, A., Rapani, A., Tsioulou, P., Nitsos, N., Syrkos, S., Pappas, A., Koutsilieris, M. and Sfakianoudis, K. (2019). A case series on natural conceptions resulting in ongoing pregnancies in menopausal and prematurely menopausal women following platelet-rich plasma treatment. Cell Transplantation, 28(9–10), 13331340. doi: 10.1177/0963689719859539 CrossRefGoogle ScholarPubMed
Park, H. B., Yang, J. H. and Chung, K. H. (2011). Characterization of the cytokine profile of platelet rich plasma (PRP) and PRP-induced cell proliferation and migration: Upregulation of matrix metalloproteinase-1 and -9 in HaCaT cells. Korean Journal of Hematology, 46(4), 265273. doi: 10.5045/kjh.2011.46.4.265 CrossRefGoogle ScholarPubMed
Parmegiani, L., Cognigni, G. E., Bernardi, S., Ciampaglia, W., Pocognoli, P. and Filicori, M. (2009). Birth of a baby conceived from frozen oocytes of a 40-year-old woman. Reproductive Biomedicine Online, 18(6), 795798. doi: 10.1016/s1472-6483(10)60028-4 CrossRefGoogle ScholarPubMed
Pellestor, F., Andréo, B., Arnal, F., Humeau, C. and Demaille, J. (2003). Maternal aging and chromosomal abnormalities: New data drawn from in vitro unfertilized human oocytes. Human Genetics, 112(2), 195203. doi: 10.1007/s00439-002-0852-x CrossRefGoogle ScholarPubMed
Petrushko, M., Yurchuk, T., Piniaiev, V. and Buderatska, N. (2019). Cryopreservation of incomplete compacted morulae and preliminary biopsy of excluded fragments. Zygote (Cambridge, England), 27(6), 386391. doi: 10.1017/S0967199419000455 CrossRefGoogle ScholarPubMed
Petrushko, M. P. (2003). [Cytogenetic analysis of unfertilized human oocytes]. TSitologiia i Genetika, 37(6), 6065.Google ScholarPubMed
Petrushko, M. P., Yurchuk, T. O., Buderatska, N. O. and Piniaiev, V. I. (2018). Oolemma invagination of fresh and cryopreserved human oocytes during in vitro fertilization by ICSI. Problems of Cryobiology and Cryomedicine, 28(3), 258265. doi: 10.15407/cryo28.03.258 CrossRefGoogle Scholar
Petryk, N. and Petryk, M. (2020). Ovarian rejuvenation through platelet-rich autologous plasma (PRP)-a chance to have a baby without donor eggs, improving the life quality of women suffering from early menopause without synthetic hormonal treatment. Reproductive Sciences, 27(11), 19751982. doi: 10.1007/s43032-020-00266-8 CrossRefGoogle ScholarPubMed
Ramaswamy Reddy, S. H., Reddy, R., Babu, N. C. and Ashok, G. N. (2018). Stem-cell therapy and platelet-rich plasma in regenerative medicines: A review on pros and cons of the technologies. Journal of Oral and Maxillofacial Pathology, 22(3), 367374. doi: 10.4103/jomfp.JOMFP_93_18 CrossRefGoogle ScholarPubMed
Ramos-Deus, P., Santos Nascimento, P., Vieira, J. I. T., Chaves, M. S., Albuquerque, K. A., Ferreira-Silva, J. C., Grázia, J. G. V., Santos Filho, A. S., Batista, A. M., Teixeira, V. W. and Oliveira, M. A. L. (2020). Application of platelet-rich plasma in the in vitro production of bovine embryos. Tropical Animal Health and Production, 52(6), 29312936. doi: 10.1007/s11250-020-02307-5 CrossRefGoogle ScholarPubMed
Rienzi, L., Cobo, A., Paffoni, A., Scarduelli, C., Capalbo, A., Vajta, G., Remohí, J., Ragni, G. and Ubaldi, F. M. (2012). Consistent and predictable delivery rates after oocyte vitrification: An observational longitudinal cohort multicentric study. Human Reproduction, 27(6), 16061612. doi: 10.1093/humrep/des088 CrossRefGoogle ScholarPubMed
Seifer, D. B., Baker, V. L. and Leader, B. (2011). Age-specific serum anti-Müllerian hormone values for 17,120 women presenting to fertility centers within the United States. Fertility and Sterility, 95(2), 747750. doi: 10.1016/j.fertnstert.2010.10.011 CrossRefGoogle ScholarPubMed
Sills, E. S., Petersen, J. L., Rickers, N. S., Wood, S. H. and Li, X. (2020). Regenerative effect of intraovarian injection of activated autologous platelet rich plasma: Serum anti-Müllerian hormone levels measured among poor prognosis in vitro fertilization patients. Int. J. Regen. Medicine, 1, 25.Google Scholar
Sills, E. S., Rickers, N. S., Li, X. and Palermo, G. D. (2018). First data on in vitro fertilization and blastocyst formation after intraovarian injection of calcium gluconate-activated autologous platelet rich plasma. Gynecological Endocrinology, 34(9), 756760. doi: 10.1080/09513590.2018.1445219 CrossRefGoogle ScholarPubMed
Simopoulou, M., Sfakianoudis, K., Bakas, P., Giannelou, P., Papapetrou, C., Kalampokas, T., Rapani, A., Chatzaki, E., Lambropoulou, M., Lourida, C., Deligeoroglou, E., Pantos, K. and Koutsilieris, M. (2018). Postponing pregnancy through oocyte cryopreservation for social reasons: Considerations regarding clinical practice and the socio-psychological and bioethical issues involved. Medicina (Kaunas, Lithuania), 54(5), 76. doi: 10.3390/medicina54050076 CrossRefGoogle ScholarPubMed
Tachibana, M., Sparman, M., Sritanaudomchai, H., Ma, H., Clepper, L., Woodward, J., Li, Y., Ramsey, C., Kolotushkina, O. and Mitalipov, S. (2009). Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature, 461(7262), 367372. doi: 10.1038/nature08368 CrossRefGoogle ScholarPubMed
Tanaka, A. and Watanabe, S. (2018). Can cytoplasmic donation rescue aged oocytes? Reproductive Medicine and Biology, 18(2), 128139. doi: 10.1002/rmb2.12252 CrossRefGoogle ScholarPubMed
Taylor, R. W. and Turnbull, D. M. (2005). Mitochondrial DNA mutations in human disease. Nature Reviews. Genetics, 6(5), 389402. doi: 10.1038/nrg1606 CrossRefGoogle ScholarPubMed
Tian, C., Liu, L., Ye, X., Fu, H., Sheng, X., Wang, L., Wang, H., Heng, D. and Liu, L. (2019). Functional oocytes derived from granulosa cells. Cell Reports, 29(13), 42564267.e9. doi: 10.1016/j.celrep.2019.11.080 CrossRefGoogle ScholarPubMed
Tzeng, C. R., Hsieh, R. H., Au, H. K., Yen, Y. H., Chang, S. J. and Cheng, Y. F. (2004). Mitochondria transfer (MIT) into oocyte from autologous cumulus granulosa cells (cGCs). Fertility and Sterility, 82, Suppl. 53. doi: 10.1016/j.fertnstert.2004.07.136 CrossRefGoogle Scholar
Valeri, C., Pappalardo, S., De Felici, M. and Manna, C. (2011). Correlation of oocyte morphometry parameters with woman’s age. Journal of Assisted Reproduction and Genetics, 28(6), 545552. doi: 10.1007/s10815-011-9555-3 CrossRefGoogle ScholarPubMed
Wang, T., Sha, H., Ji, D., Zhang, H. L., Chen, D., Cao, Y. and Zhu, J. (2014). Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell, 157(7), 15911604. doi: 10.1016/j.cell.2014.04.042 CrossRefGoogle ScholarPubMed
World Health Organization. (2006). Reproductive health indicators: guidelines for their generation, interpretation and analysis for global monitoring. World Health Organization, 63 pp.Google Scholar
World Health Organization. (2021). WHO laboratory manual for the examination and processing of human semen. 6th edition. World Health Organization, 276 pp.Google Scholar
Wu, J., Zhang, L. and Wang, X. (2000). Maturation and apoptosis of human oocytes in vitro are age-related. Fertility and Sterility, 74(6), 11371141. doi: 10.1016/s0015-0282(00)01597-1 CrossRefGoogle ScholarPubMed
Yoon, H. G., Yoon, S. H., Son, W. Y., Kim, J. G., Im, K. S. and Lim, J. H. (2001). Alternative embryo transfer on day 3 or day 5 for reducing the risk of multiple gestations. Journal of Assisted Reproduction and Genetics, 18(5), 262267. doi: 10.1023/a:1016651016502 CrossRefGoogle ScholarPubMed
Yurchuk, T. (2021). Cryopreservation of immature oocytes at germinal vesicle stage. when gamete maturation performance seems to be most appropriate? Problems of Cryobiology and Cryomedicine, 31(2), 161167. doi: 10.15407/cryo31.02.161 CrossRefGoogle Scholar
Zhang, J., Liu, H., Luo, S., Chavez-Badiola, A., Liu, Z., Yang, M., Munne, S., Konstantinidis, M., Wells, D. and Huang, T. (2016a). First live birth using human oocytes reconstituted by spindle nuclear transfer for mitochondrial DNA mutation causing Leigh syndrome. Fertility and Sterility, 106(3), e375e376. doi: 10.1016/j.fertnstert.2016.08.004 CrossRefGoogle Scholar
Zhang, J., Wang, C. W., Krey, L., Liu, H., Meng, L., Blaszczyk, A., Adler, A. and Grifo, J. (1999). In vitro maturation of human preovulatory oocytes reconstructed by germinal vesicle transfer. Fertility and Sterility, 71(4), 726731. doi: 10.1016/s0015-0282(98)00549-4 CrossRefGoogle ScholarPubMed
Zhang, J., Zhuang, G., Zeng, Y., Grifo, J., Acosta, C., Shu, Y. and Liu, H. (2016b). Pregnancy derived from human zygote pronuclear transfer in a patient who had arrested embryos after IVF. Reproductive Biomedicine Online, 33(4), 529533. doi: 10.1016/j.rbmo.2016.07.008 CrossRefGoogle Scholar
Zhang, J. J., Choo, S. and Yang, M. (2015). Autologous oocyte cryopreservation in women aged 40 and older using minimal stimulation IVF. Reproductive Biology and Endocrinology: RB&E, 13, 112. doi: 10.1186/s12958-015-0110-4 CrossRefGoogle ScholarPubMed
Zhang, M., Lu, Y., Chen, Y., Zhang, Y. and Xiong, B. (2020). Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes. Redox Biology, 28, 101327. doi: 10.1016/j.redox.2019.101327 CrossRefGoogle ScholarPubMed
Zou, W., Slone, J., Cao, Y. and Huang, T. (2020). Mitochondria and their role in human reproduction. DNA and Cell Biology, 39(8), 13701378. doi: 10.1089/dna.2019.4807 CrossRefGoogle ScholarPubMed