Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T07:05:12.783Z Has data issue: false hasContentIssue false

Reference genes selection for real-time quantitative PCR analysis in mouse germinal vesicle oocytes

Published online by Cambridge University Press:  23 September 2019

M.A. Filatov*
Affiliation:
Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, Moscow, 119991, Russia
D.A. Nikishin
Affiliation:
Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, Moscow, 119991, Russia N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, Moscow, 119334, Russia
Y.V. Khramova
Affiliation:
Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, Moscow, 119991, Russia
M.L. Semenova
Affiliation:
Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, Moscow, 119991, Russia
*
Address for correspondence: M.A. Filatov. Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, Moscow, 119991, Russia. Tel: +7 495 939 39 00. Fax: +7 495 939 43 09. E-mail: maxfilat@yandex.ru

Summary

Reference gene selection in mouse oocytes is an important task required to perform further adequate analysis of target gene expression levels. In the current work we have analyzed expression stability of the seven most commonly used reference genes (Actb, Eef1e1, Gapdh, H2afz, Ppia, Rpl4 and Ubc) in mouse oocytes at the germinal vesicle (GV) stage. We have performed analysis of expression stability of the above-mentioned reference genes with the three most commonly used software tools: geNorm, BestKeeper and NormFinder. Taking into account the results obtained from all of these programmes Gapdh, Rpl4 and H2afz seem to be suitable candidate reference genes in GV oocytes of mouse.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, H, Du, Z, Li, X, Yang, Q, Zhang, YC, Wu, M, Li, Y and Zhang, G (2015) Identification of suitable reference genes for gene expression studies using quantitative polymerase chain reaction in lung cancer in vitro . Mol Med Rep 11, 3767–73.10.3892/mmr.2015.3159CrossRefGoogle ScholarPubMed
Andersen, CL, Jensen, JL and Ørntoft, TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64, 5245–50.10.1158/0008-5472.CAN-04-0496CrossRefGoogle ScholarPubMed
Chapman, JR and Waldenström, J (2015) With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS One 10, e0141853.10.1371/journal.pone.0141853CrossRefGoogle ScholarPubMed
De Spiegelaere, W, Dern-Wieloch, J, Weigel, R, Schumacher, V, Schorle, H, Nettersheim, D, Bergmann, M, Brehm, R, Kliesch, S, Vandekerckhove, L and Fink, C (2015) Reference gene validation for RT-qPCR, a note on different available software packages. PLoS One 10, e0122515.10.1371/journal.pone.0122515CrossRefGoogle ScholarPubMed
Filatov, M, Khramova, Y and Semenova, M (2018) Molecular mechanisms of prophase I meiotic arrest maintenance and meiotic resumption in mammalian oocytes. Reprod Sci 1, 1933719118765974. [Epub ahead of print]Google Scholar
Gumus, E, Sari, I, Yilmaz, M and Cetin, A (2018) Investigation of LAMTOR1 gene and protein expressions in germinal vesicle and metaphase II oocytes and embryos from 1-cell to blastocyst stage in a mouse model. Gene Expr Patterns 28, 72–6.10.1016/j.gep.2018.03.002CrossRefGoogle ScholarPubMed
Kozera, B and Rapacz, M (2013) Reference genes in real-time PCR. J Appl Genet 54, 391406.10.1007/s13353-013-0173-xCrossRefGoogle ScholarPubMed
Kuijk, EW, du Puy, L, van Tol, HT, Haagsman, HP, Colenbrander, B and Roelen, BA (2007) Validation of reference genes for quantitative RT-PCR studies in porcine oocytes and preimplantation embryos. BMC Dev Biol 7, 58.10.1186/1471-213X-7-58CrossRefGoogle ScholarPubMed
Kumar, P, Yadav, P, Verma, A, Singh, D, De, S and Datta, TK (2012) Identification of stable reference genes for gene expression studies using quantitative real time PCR in buffalo oocytes and embryos. Reprod Domest Anim 47, e8891.10.1111/j.1439-0531.2012.01998.xCrossRefGoogle ScholarPubMed
Macabelli, CH, Ferreira, RM, Gimenes, LU, de Carvalho, NA, Soares, JG, Ayres, H, Ferraz, ML, Watanabe, YF, Watanabe, OY, Sangalli, JR, Smith, LC, Baruselli, PS, Meirelles, FV and Chiaratti, MR (2014) Reference gene selection for gene expression analysis of oocytes collected from dairy cattle and buffaloes during winter and summer. PLoS One 9, e93287.10.1371/journal.pone.0093287CrossRefGoogle Scholar
Mafra, V, Kubo, KS, Alves-Ferreira, M, Ribeiro-Alves, M, Stuart, RM, Boava, LP, Rodrigues, CM and Machado, MA (2012) Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS One 7, e31263.10.1371/journal.pone.0031263CrossRefGoogle ScholarPubMed
Mallona, I, Lischewski, S, Weiss, J, Hause, B and Egea-Cortines, M (2010) Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida . BMC Plant Biol 10, 4.10.1186/1471-2229-10-4CrossRefGoogle ScholarPubMed
Mamo, S, Gal, AB, Bodo, S and Dinnyes, A (2007) Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro . BMC Dev Biol 7, 14.10.1186/1471-213X-7-14CrossRefGoogle ScholarPubMed
Mamo, S, Gal, AB, Polgar, Z and Dinnyes, A (2008) Expression profiles of the pluripotency marker gene POU5F1 and validation of reference genes in rabbit oocytes and preimplantation stage embryos. BMC Mol Biol 9, 67.10.1186/1471-2199-9-67CrossRefGoogle ScholarPubMed
Mehlmann, LM (2013) Losing mom’s message: requirement for DCP1A and DCP2 in the degradation of maternal transcripts during oocyte maturation. Biol Reprod 88, 10.10.1095/biolreprod.112.106591CrossRefGoogle ScholarPubMed
Nikishin, DA, Filatov, MA, Kiseleva, MV, Bagaeva, TS, Konduktorova, VV, Khramova, YV, Malinova, IV, Komarova, EV and Semenova, ML (2018) Selection of stable expressed reference genes in native and vitrified/thawed human ovarian tissue for analysis by qRT-PCR and western blot. J Assist Reprod Genet 35, 1851–60.10.1007/s10815-018-1263-9CrossRefGoogle ScholarPubMed
Neuvians, TP, Gashaw, I, Sauer, CG, von Ostau, C, Kliesch, S, Bergmann, M, Häcker, A and Grobholz, R (2005) Standardization strategy for quantitative PCR in human seminoma and normal testis. J Biotechnol 117, 163–71.10.1016/j.jbiotec.2005.01.011CrossRefGoogle ScholarPubMed
O’Connor, T, Wilmut, I and Taylor, J (2013) Quantitative evaluation of reference genes for real-time PCR during in vitro maturation of ovine oocytes. Reprod Domest Anim 48, 477–83.10.1111/rda.12112CrossRefGoogle ScholarPubMed
Otoi, T, Fujii, M, Tanaka, M, Ooka, A and Suzuki, T (2000) Oocyte diameter in relation to meiotic competence and sperm penetration. Theriogenology 54, 535–42.10.1016/S0093-691X(00)00368-XCrossRefGoogle ScholarPubMed
Pfaffl, MW, Tichopad, A, Prgomet, C and Neuvians, TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol Lett 26, 509–15.10.1023/B:BILE.0000019559.84305.47CrossRefGoogle ScholarPubMed
Selvey, S, Thompson, EW, Matthaei, K, Lea, RA, Irving, MG and Griffiths, LR (2001) Beta-actin – an unsuitable internal control for RT-PCR. Mol Cell Probes 15, 307–11.10.1006/mcpr.2001.0376CrossRefGoogle ScholarPubMed
Vandesompele, J, De Preter, K, Pattyn, F, Poppe, B, Van Roy, N, De Paepe, A and Speleman, F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034.Google Scholar
Wang, YK, Li, X, Song, ZQ and Yang, CX (2017) Methods of RNA preparation affect mRNA abundance quantification of reference genes in pig maturing oocytes. Reprod Domest Anim 52, 722–30.10.1111/rda.12972CrossRefGoogle ScholarPubMed
Zare, Z, Abouhamzeh, B, Masteri Farahani, R, Salehi, M and Mohammadi, M (2017) Supplementation of l-carnitine during in vitro maturation of mouse oocytes affects expression of genes involved in oocyte and embryo competence: an experimental study. Int J Reprod Biomed (Yazd) 15, 779–86.Google Scholar
Zenclussen, ML, Casalis, PA, Jensen, F, Woidacki, K and Zenclussen, AC (2014) Hormonal fluctuations during the estrous cycle modulate heme oxygenase-1 expression in the uterus. Front Endocrinol (Lausanne) 13, 32.Google Scholar
Zhang, GM, Gu, CH, Zhang, YL, Sun, HY, Qian, WP, Zhou, ZR, Wan, YJ, Jia, RX, Wang, LZ and Wang, F (2013) Age-associated changes in gene expression of goat oocytes. Theriogenology 80, 328–36.10.1016/j.theriogenology.2013.04.019CrossRefGoogle ScholarPubMed
Zhong, H and Simons, JW (1999) Direct comparison of GAPDH, -actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Biophys Res Commun 259, 523–6.10.1006/bbrc.1999.0815CrossRefGoogle ScholarPubMed