Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:25:19.058Z Has data issue: false hasContentIssue false

Progressive motility – a potential predictive parameter for semen fertilization capacity in bovines

Published online by Cambridge University Press:  23 December 2014

Y. Li
Affiliation:
South China Agricultural University, College of Veterinary Medicine, Guangzhou 510642, China.
D. Kalo
Affiliation:
Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel.
Y. Zeron
Affiliation:
Sion Artificial Insemination Center, Hafetz-Haim, Israel.
Z. Roth*
Affiliation:
Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel.
*
All correspondence to: Z. Roth. Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel. Tel: +972 8 9489103. Fax: +972 8 9489552. e-mail: roth@agri.huji.ac.il

Summary

We examined the association between progressive motility of spermatozoa and in vitro fertilization (IVF) competence of bovine ejaculates. Fresh semen was evaluated using a computerized sperm quality analyzer for bulls using progressive motility as the primary parameter. Ejaculates with high progressive motility (HPM; >81%) were compared with those with low progressive motility (LPM; <62%). Semen concentration and sperm velocity were lower (P < 0.05) in HPM versus LPM ejaculates. Volume and motile sperm concentration did not differ between groups (P > 0.05). Examination of sperm morphology revealed a higher proportion of spermatozoa with abnormal morphology (P < 0.01) in LPM versus HPM ejaculates, the predominant abnormal feature being a bent tail (P < 0.05). Sperm viability, acrosome integrity and DNA fragmentation did not differ between HPM and LPM samples. Mitochondrial membrane potential was higher (P < 0.01) in HPM versus LPM semen. Zinc concentrations in the seminal plasma correlated with progressive motility (R2 = 0.463, P = 0.03). In addition, representative ejaculates from HPM and LPM groups were cryopreserved in straws and used for IVF. The proportions of embryos cleaved to 2- and 4-cell stages (88.1 ± 1.1 versus 80.5 ± 1.7, P = 0.001) and developed to blastocysts (33.5 ± 1.6 versus 23.5 ± 2.2, P = 0.026) were higher for HPM than LPM semen. The total cell number of embryos and blastocyst apoptotic index did not differ between groups. Although sperm progressive motility is associated with IVF competence, further examination is required to determine whether progressive motility can serve as a predictor of semen fertilization capacity in vivo.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alavi, S.M., Gela, D., Rodina, M. & Linhart, O. (2011). Roles of osmolality, calcium–potassium antagonist and calcium in activation and flagellar beating pattern of sturgeon sperm. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 160, 166–74.CrossRefGoogle ScholarPubMed
Alavi-Shoushtari, S.M., Rezai, S.A., Ansari, M.H. & Khaki, A. (2009). Effects of the seminal plasma zinc content and catalase activity on the semen quality of water buffalo (Bubalus bubalis) bulls. Pak. J. Biol. Sci. 12,134–9.CrossRefGoogle ScholarPubMed
Alexander, J.H. (2008). Bull breeding soundness evaluation: a practitioner's perspective. Theriogenology 70, 469–72.CrossRefGoogle ScholarPubMed
Al-Makhzoomi, A., Lundeheim, N., Håård, M. & Rodríguez-Martínez, H. (2008). Sperm morphology and fertility of progeny-tested AI dairy bulls in Sweden. Theriogenology 70, 682–91.CrossRefGoogle ScholarPubMed
Al Naib, A., Hanrahan, J.P., Lonergan, P. & Fair, S. (2011). In vitro assessment of sperm from bulls of high and low field fertility. Theriogenology 76, 161–7.CrossRefGoogle ScholarPubMed
Atig, F., Raffa, M., Habib, B.A., Kerkeni, A., Saad, A. & Ajina, M. (2012). Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 12, 6.CrossRefGoogle ScholarPubMed
Bedwal, R.S. & Bahuguna, A. (1994). Zinc, copper and selenium in reproduction. Experientia 50, 626–40.CrossRefGoogle ScholarPubMed
Broekhuijse, M.L., Šoštarić, W.J.E., Feitsma, H. & Gadella, B.M. (2012). Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 3, 779–89.CrossRefGoogle Scholar
Calvin, H.I. (1979). Electrophoretic evidence for the identity of the major zinc-binding polypeptides in the rat sperm tail. Biol. Reprod. 21, 873–82.CrossRefGoogle ScholarPubMed
Carafoli, E. (2002). Calcium signaling: a tale for all seasons. Proc. Natl. Acad. Sci. USA 99, 1115–22.CrossRefGoogle ScholarPubMed
Cardullo, R.A. & Baltz, J.M. (1991). Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency. Cell Motil. Cytoskeleton 19, 180–8.CrossRefGoogle ScholarPubMed
Chang, H. & Suarez, S.S. (2011). Two distinct Ca2+ signaling pathways modulate sperm flagellar beating patterns in mice. Biol Reprod. 85, 296305.CrossRefGoogle ScholarPubMed
Comhaire, F.H., Vermeulen, L. & Schoonjans, F. (1987). Reassessment of the accuracy of traditional sperm characteristics and adenosine triphosphate (ATP) in estimating the fertilizing potential of human semen in vivo . Int. J. Androl. 10, 653–62.CrossRefGoogle ScholarPubMed
Darszon, A., Nishigaki, T., Beltran, C. & Treviño, C.L. (2011). Calcium channels in the development, maturation, and function of spermatozoa. Physiol. Rev. 91, 1305–55.CrossRefGoogle ScholarPubMed
Dissanayake, D., Wijesinghe, P., Ratnasooriya, W. & Wimalasena, S. (2010). Relationship between seminal plasma zinc and semen quality in a subfertile population. J. Hum. Reprod. Sci. 3, 124–8.CrossRefGoogle Scholar
Fair, W.R., Couch, J. & Wehner, N. (1976). Prostatic antibacterial factor. Identity and significance. Urology 7, 169–77.CrossRefGoogle ScholarPubMed
Farrell, P.B., Presicce, G.A., Brockett, C.C. & Foote, R.H. (1998). Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology 49, 871–9.CrossRefGoogle ScholarPubMed
Gadea, J., Matás, C., & Lucas, X. (1998) Prediction of porcine semen fertility by homologous in vitro penetration (hIVP) assay. Anim. Reprod. Sci. 54, 95108.CrossRefGoogle ScholarPubMed
Gallon, F., Marchetti, C., Jouy, N. & Marchetti, P. (2006). The functionality of mitochondria differentiates human spermatozoa with high and low fertilizing capability. Fertil. Steril. 86, 1526–30.CrossRefGoogle ScholarPubMed
Gendelman, M., Aroyo, A., Yavin, S. & Roth, Z. (2010). Seasonal effects on gene expression, cleavage timing, and developmental competence of bovine preimplantation embryos. Reproduction 140, 7382.CrossRefGoogle ScholarPubMed
Gopalkrishnan, K., Hinduja, I.N. & Anand Kumar, T.C. (1991). Assessment of mitochondrial activity of human spermatozoa: motility/viability in fertile/infertile men. Mol. Androl. 3, 243–50.Google Scholar
Gravance, C.G., Garner, D.L., Miller, M.G. & Berger, T. (2001). Fluorescent probes and flow cytometry to assess rat sperm integrity and mitochondrial function. Reprod. Toxicol. 15, 510.CrossRefGoogle ScholarPubMed
Hafez, B. & Hafez, E.S.E. (2000). Reproduction in Farm Animals. 7th ed. Lippincott Williams-Wilkins, Baltimore, MD.CrossRefGoogle Scholar
Henkel, R., Bittner, J., Weber, R., Huther, F. & Miska, W. (1999). Relevance of zinc in human sperm flagella and its relation to motility. Fertil. Steril. 71, 1138–43.CrossRefGoogle ScholarPubMed
Ho, E. & Ames, B.N. (2002). Low intracellular zinc induces oxidative DNA damage, disrupts P53, NFNF, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc. Natl. Acad. Sci. USA 99, 16770–5.CrossRefGoogle Scholar
Jedrzejczak, P., Taszarek-Hauke, G., Hauke, J., Pawelczyk, L. & Duleba, A.J. (2008). Prediction of spontaneous conception based on semen parameters. Int. J. Androl. 31, 499507.CrossRefGoogle ScholarPubMed
Kalo, D. & Roth, Z. (2011). Involvement of the sphingolipid ceramide in heat-shock-induced apoptosis of bovine oocytes. Reprod. Fertil. Dev. 23, 876–88.CrossRefGoogle ScholarPubMed
Kasai, T., Ogawa, K., Mizuno, K., Nagai, S., Uchida, Y., Ohta, S., Fujie, M., Suzuki, K., Hirata, S. & Hoshi, K. (2002). Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. Asian. J. Androl. 4, 97103.Google ScholarPubMed
Kastelic, J.P. & Thundathil, J.C. (2008). Breeding soundness evaluation and semen analysis for predicting bull fertility. Reprod. Domest. Anim. 43, 368–73.CrossRefGoogle ScholarPubMed
Khan, M.S., Zaman, S., Sajjad, M., Shoaib, M. & Gilani, G. (2011). Assessment of the level of trace element zinc in seminal plasma of males and evaluation of its role in male infertility. Int. J. Appl. Basic. Med. Res. 1, 93–6.CrossRefGoogle ScholarPubMed
Kondracki, S., Wysokińska, A., Iwanina, M., Banaszewska, D. & Sitarz, D. (2011). Effect of sperm concentration in an ejaculate on morphometric traits of spermatozoa in Duroc boars. Pol. J. Vet. Sci. 14, 3540.CrossRefGoogle Scholar
Kondracki, S., Banaszewska, D., Wysokńjska, A. & Iwanina, M. (2012). The effect of sperm concentration in the ejaculate on morphological traits of bull spermatozoa. Folia Biol (Krakow) 60, 8591.CrossRefGoogle ScholarPubMed
Kroetsch, T.G. & Stubbing, R.B. (1992). Sire and insemination dose effect on in vitro fertilization of bovine oocytes. Theriogenology 37, 240.CrossRefGoogle Scholar
Kumar, N., Verma, R.P., Singh, L.P., Varshney, V.P. & Dass, R.S. (2006). Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attribute and serum testosterone level in crossbred cattle (Bos indicus x Bos taurus) bulls. Reprod. Nutr. Dev. 46, 663–75.CrossRefGoogle ScholarPubMed
Kumar, D., Kumar, P., Singh, P., Yadav, S.P. & Yadav, P.S. (2012). 66 buffalo-bull semen-fertility evaluation in relation to motility and integrity of acrosome, plasma membrane, and sperm DNA. Reprod. Fertil. Dev. 25, 180.CrossRefGoogle Scholar
Larsson, B. & Rodríguez-Martínez, H. (2000) Can we use in vitro fertilization tests to predict semen fertility? Anim. Reprod. Sci. 60–61, 327–36.CrossRefGoogle ScholarPubMed
Lefièvre, L., Machado-Oliveira, G., Ford, C., Kirkman-Brown, J., Barratt, C. & Publicover, S. (2009). Communication between female tract and sperm: saying NO when you mean yes. Commun. Integr. Biol. 2, 82–5.CrossRefGoogle ScholarPubMed
Lemma, A. (2011). Effect of cryopreservation on sperm quality and fertility. In Artificial Insemination in Farm Animals (ed. Manafi, M.), ISBN: 978-953-307-312-5. In Tech, DOI: 10.5772/16563.Google Scholar
Lenz, R.W., Kjelland, M.E., Vonderhaar, K., Swannack, T.M. & Moreno, J.F. (2011). A comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer. J. Anim. Sci. 89, 383–8.CrossRefGoogle ScholarPubMed
Lewis, S.E.M. (2007). Is sperm evaluation useful in predicting human fertility? Reproduction 134, 3140.CrossRefGoogle ScholarPubMed
Lewis-Jones, D.I., Aird, I.A., Biljan, M.M. & Kingsland, C.R. (1996). Effects of sperm activity on zinc and fructose concentrations in seminal plasma. Hum. Reprod. 11, 2465–7.CrossRefGoogle ScholarPubMed
López Rodríguez, A., Rijsselaere, T., Beek, J., Vyt, P., Van Soom, A. & Maes, D. (2013). Boar seminal plasma components and their relation with semen quality. Syst. Biol. Reprod. Med. 59, 512.CrossRefGoogle ScholarPubMed
Love, C.C. (2011). Relationship between sperm motility, morphology and the fertility of stallions. Theriogenology 76, 547–57.CrossRefGoogle ScholarPubMed
Love, C.C., Thompson, J.A., Brinsko, S.P., Rigby, S.L., Blanchard, T.L., Lowry, V.K. & Varner, D.D. (2003). Relationship between stallion sperm motility and viability as detected by two fluorescence staining techniques using flow cytometry. Theriogenology 60, 1127–38.CrossRefGoogle ScholarPubMed
Mann, T. & Lutwak-Mann, C. (1981). Male Reproductive Function and Semen. Springer Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Marin-Briggiler, C.I., Gonzalez-Echeverria, F., Buffone, M., Calamera, J.C., Tezon, J.G. & Vazquez-Levin, M.H. (2003). Calcium requirements for human sperm function in vitro. Fertil . Steril. 79, 1396–403.CrossRefGoogle Scholar
Martinez-Pastor, F., Johannisson, A., Gil, J., Kaabi, M., Anel, L., Paz, P. & Rodriguez-Martinez, H. (2004). Use of chromatin stability assay, mitochondrial stain JC-1, and fluorometric assessment of plasma membrane to evaluate frozen-thawed ram semen. Anim. Reprod. Sci. 84, 121–33.CrossRefGoogle ScholarPubMed
Massányi, P., Trandzik, J., Nad, P., Koreneková, B., Skalická, M., Toman, R., Lukac, N., Halo, M. & Strapak, P. (2004). Concentration of copper, iron, zinc, cadmium, lead, and nickel in bull and ram semen and relation to the occurrence of pathological spermatozoa. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 39, 3005–14.CrossRefGoogle Scholar
Ohgoda, O., Niwa, K., Yuhara, M., Takahashi, S. & Kanoya, K. (1988). Variations in penetration rates in vitro of bovine follicular oocytes do not reflect conception rates after artificial insemination using frozen semen from different bulls Theriogenology 29, 1375–81.CrossRefGoogle Scholar
Olson, G.E. & Winfrey, V.P. (1992). Structural organization of surface domains of sperm mitochondria. Mol. Reprod. Dev. 33, 8998.CrossRefGoogle ScholarPubMed
Orgal, S., Zeron, Y., Elior, N., Biran, D., Friedman, E., Druker, S. & Roth, Z. (2012). Season-induced changes in bovine spermatozoa motility following a freeze-thaw procedure. J. Reprod. Dev. 58, 212–8.CrossRefGoogle ScholarPubMed
Paoli, D., Gallo, M., Rizzo, F., Baldi, E., Francavilla, S., Lenzi, A., Lombardo, F. & Gandini, L. (2011). Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil. Steril. 95, 2315–9.CrossRefGoogle ScholarPubMed
Parrish, J.J., Susko-Parrish, J.L., Leibfried-Rutledge, M.L., Critser, E.S., Eyestone, W.H. & First, N.L. (1986). Bovine in vitro fertilization with frozen–thawed semen. Theriogenology 25, 591600.CrossRefGoogle ScholarPubMed
Prasad, A.S. (1991). Discovery of human zinc deficiency and studies in an experimental human model. Am. J. Clin. Nutr. 53, 403–12.CrossRefGoogle Scholar
Prasad, A.S., Bao, B., Beck, F.W., Kucuk, O. & Sarkar, F.H. (2004). Antioxidant effect of zinc in humans. Free Radic. Biol. Med. 37, 1182–90.CrossRefGoogle ScholarPubMed
Rodriguez, A.L., Rijsselaere, T., Bijttebier, J., Vyt, P., Van Soom, A. & Maes, D. (2011). Effectiveness of the sperm quality analyzer (SQA-Vp) for porcine semen analysis. Theriogenology 75, 972–7.CrossRefGoogle ScholarPubMed
Roudebush, W.E. & Diehl, J.R. (2001). Platelet-activating factor content in boar spermatozoa correlates with fertility. Theriogenology 55, 1633–8.CrossRefGoogle ScholarPubMed
Ruiz-Pesini, E., Diez, C., Lapeña, A.C., Pérez-Martos, A., Montoya, J., Alvarez, E., Arenas, J. & López-Pérez, M.J. (1998). Correlation of sperm motility with mitochondrial enzymatic activities. Clin. Chem. 44, 1616–20.CrossRefGoogle ScholarPubMed
Schneider, C.S., Ellington, J.E. & Wright, R.W. Jr (1999) Relationship between bull field fertility and in vitro embryo production using sperm preparation methods with and without somatic cell co-culture. Theriogenology 51, 1085–98.CrossRefGoogle ScholarPubMed
Sørensen, M.B., Bergdahl, I.A., Hjøllund, N.H., Bonde, J.P., Stoltenberg, M. & Ernst, E. (1999). Zinc, magnesium and calcium in human seminal fluid: relations to other semen parameters and fertility. Mol. Hum. Reprod. 5, 331–7.CrossRefGoogle ScholarPubMed
Spinaci, M., De Ambrogi, M., Volpe, S., Galeati, G., Tamanini, C. & Seren, E. (2005). Effect of staining and sorting on boar sperm membrane integrity, mitochondrial activity and in vitro blastocyst development. Theriogenology 64, 191201.CrossRefGoogle ScholarPubMed
Suarez, S.S. & Dai, X. (1995). Intracellular calcium reaches different levels of elevation in hyperactivated and acrosome-reacted hamster sperm. Mol. Reprod. Dev. 42, 325–33.CrossRefGoogle ScholarPubMed
Suarez, S.S., Varosi, S.M. & Dai, X. (1993). Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle. Proc. Natl. Acad. Sci. USA 90, 4660–4.CrossRefGoogle ScholarPubMed
Tanghe, S., Van Soom, A., Sterckx, V., Maes, D. & de Kruif, A. (2002). Assessment of different sperm quality parameters to predict in vitro fertility of bulls. Reprod. Domest. Anim. 37, 127–32.CrossRefGoogle ScholarPubMed
Tollner, T.L., Dong, Q. & VandeVoort, C.A. (2011). Frozen-thawed rhesus sperm retain normal morphology and highly progressive motility but exhibit sharply reduced efficiency in penetrating cervical mucus and hyaluronic acid gel. Cryobiology 62, 1521.CrossRefGoogle ScholarPubMed
Verstegen, J., Igur-Ouada, M. & Onclin, K. (2002). Computer assisted analyzer in andrology research and veterinary practice. Theriogenology 57, 149–79.CrossRefGoogle ScholarPubMed
Vincent, P., Underwood, S.L., Dolbec, C., Bouchard, N., Kroetsch, T. & Blondin, P. (2012). Bovine semen quality control in artificial insemination centers. Anim. Reprod. 3, 153–65.Google Scholar
Waberski, D., Dirksen, G., Weitze, K.F., Leiding, C. & Hahn, R. (1990). Field studies of the effect of sperm motility and morphology on the fertility of boars used for insemination. Tierarztl Prax. 18, 591–4.Google ScholarPubMed
Ward, F., Rizos, D., Boland, M.P. & Lonergan, P. (2003). Effect of reducing sperm concentration during IVF on the ability to distinguish between bulls of high and low field fertility: work in progress. Theriogenology 59, 1575–84.CrossRefGoogle ScholarPubMed
Wiwanitkit, V. (2011). Not only seminal plasma zinc but also other trace elements affect semen quality. J. Hum. Reprod. Sci. 4, 58.Google ScholarPubMed
Wysokińska, A., Kondracki, S. & Banaszewska, D. (2009). Morphometrical characteristics of spermatozoa in Polish Landrace boars with regard to the number of spermatozoa in an ejaculate. Reprod. Biol. 9, 271–82.CrossRefGoogle Scholar
Zhang, B.R., Larsson, B., Lundeheim, N. & Rodriguez-Martinez, H. (1997). Relationship between embryo development in vitro and 56-day nonreturn rates of cows inseminated with frozen–thawed semen from dairy bulls. Theriogenology 48, 221–31.CrossRefGoogle ScholarPubMed
Zhang, B.R., Larsson, B., Lundeheim, N., & Rodriguez-Martinez, H. (1998) Sperm characteristics and zona pellucida binding in relation to field fertility of frozen–thawed semen from dairy AI bulls. Int. J. Androl. 21, 207–16.CrossRefGoogle ScholarPubMed