Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T18:42:54.222Z Has data issue: false hasContentIssue false

Oocyte genome cloning used in biparental bovine embryo reconstruction

Published online by Cambridge University Press:  05 April 2012

Gabriel Vichera
Affiliation:
Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417 Buenos Aires, Argentina.
Ramiro Olivera
Affiliation:
Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417 Buenos Aires, Argentina.
Daniel Salamone*
Affiliation:
Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417 Buenos Aires, Argentina.
*
All correspondence to: D. Salamone. Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417 Buenos Aires, Argentina. Tel: + 54 11 4524 8000/8196. Fax: + 54 11 4514 8737. E-mail: salamone@agro.uba.ar

Summary

Oocyte genome cloning is a method by which haploid maternal embryos are obtained in such a way that parthenogenetic haploid blastomeres from these embryos can be considered as a clone of the original gamete. Our objective was to generate oocyte genome replicates and use them to reconstruct biparental embryos by fusion with haploid male hemizygotes. Furthermore, we generated biparental homogeneous transgene-expressing embryos using parthenogenetic haploid blastomeres that expressed a transgene (EGFP). In the first experiment, parthenogenetic haploid embryos were generated by incubation of oocytes in ionomycin and 6-dimethylaminopurine (DMAP) with a 3 h interval to permit their second polar body extrusion. The cleavage rate was 87.3%. To generate transgene-expressing blastomeres, activated oocytes were injected with pCX–EGFP–liposome complexes 3 h post ionomycin exposure, resulting in a cleavage rate of 84.4%. In the second experiment, haploid parthenogenetic blastomeres that were positive or negative for EGFP expression were used to reconstruct biparental embryos. Cleavage and blastocyst rates for the reconstructed embryos were 78.4% and 61.1% and 10.8% and 8.4%, using EGFP-positive or -negative blastomeres, respectively (P < 0.05). All of the reconstructed embryos showed EGFP expression, with 96.6% of them showing homogenic expression. Oct-4 expression in the reconstructed blastocysts displayed a similar pattern as IVF-blastocyst controls. In conclusion, our results proved that it is possible to use oocyte genome replicates to reconstruct biparental bovine embryos and that this technique is efficient to generate homogeneous transgene-expressing embryos.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barton, S.C., Surani, M.A. & Norris, M.L. (1984). Role of paternal and maternal genomes in mouse development. Nature 311, 374–6.CrossRefGoogle ScholarPubMed
Bavister, B.D. & Yanagimachi, R. (1977). The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro. Biol. Reprod. 16, 228–37.CrossRefGoogle ScholarPubMed
Bhak, J.S., Lee, S.L., Ock, S.A., Mohana Kumar, M.B., Choe, S.Y. & Rho, G.J. (2006). Developmental rate and ploidy of embryos produced by nuclear transfer with different activation treatments in cattle. Anim. Reprod. Sci. 92, 3749.CrossRefGoogle ScholarPubMed
Boediono, A., Suzuki, T., Li, L.Y. & Godke, R.A. (1999). Offspring born from chimeras reconstructed from parthenogenetic and in vitro fertilized bovine embryos. Mol. Reprod. Dev. 53, 159–70.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Cibelli, J., Stice, S.L., Gluekey, P.J., Kane, J.J., Jerry, J., Blackwell, C., Ponce de León, A. & Robl, J.M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblast. Science 280, 1256–8.CrossRefGoogle Scholar
Collas, P., Fissore, R., Robl, J.M., Sullivan, E.J. & Barnes, F.L. (1993). Electrically induced calcium elevation, activation and parthenogenetic development of bovine oocytes. Mol. Reprod. Dev. 34, 212–23.CrossRefGoogle ScholarPubMed
Debec, A. (1984). Evolution of karyotype in haploid cell lines of Drosophila melanogaster. Exp. Cell Res. 151, 236–46.CrossRefGoogle ScholarPubMed
Escribá, M.J. & García-Ximénez, F. (1999). Electroactivation of rabbit oocytes in an hypotonic pulsing medium and parthenogenetic in vitro development without cytochalasin B-diploidizing pre-treatment. Theriogenology 51, 963–73.CrossRefGoogle Scholar
Escribá, M.J. & García-Ximénez, F. (2000). Influence of sequence duration and number of electrical pulses upon rabbit oocyte activation and parthenogenetic development. Anim. Reprod. Sci. 59, 99107.CrossRefGoogle Scholar
Escribá, M.J. & García-Ximénez, F. (2001). Reconstruction of the heteroparental diploid condition in rabbit zygotes by nuclear transfer. Theriogenology 55, 771–84.CrossRefGoogle ScholarPubMed
Freed, J.J. & Mezger-Freed, L. (1970). Stable haploid cultured cell lines from frog embryos. Proc. Natl. Acad. Sci. USA 65, 337–44.CrossRefGoogle ScholarPubMed
García-Ximénez, F. & Escribá, M.J. (2002). Viable offspring derived from cryopreserved haploid rabbit parthenotes. Theriogenology 57, 1319–25.CrossRefGoogle Scholar
Grabiec, A., Max, A. & Tischner, M. (2007). Parthenogenetic activation of domestic cat oocytes using ethanol, calcium ionophore, cycloheximide and a magnetic field. Theriogenology 67, 795800.CrossRefGoogle ScholarPubMed
Hagemann, L.J. & First, N.L. (1992). Embryonic cytoplasmic extracts rescue murine androgenomes to the blastocyst stage. Development 114, 9971001.CrossRefGoogle Scholar
Henery, C.C. & Kaufman, M.H. (1992). Cleavage rate of haploid and diploid parthenogenetic mouse embryos during the preimplantation period. Mol. Reprod. Dev. 31, 258–63.CrossRefGoogle ScholarPubMed
Ikawa, M., Kominami, K., Yoshimura, Y., Tanaka, K., Nishimune, Y. &, Okabe, M. (1995). A rapid and non-invasive selection of transgenic embryos before implantation using green fluorescent protein (GFP). FEBS Letts. 375, 125–8.CrossRefGoogle ScholarPubMed
Kaufman, M.H. (1983). Early Mammalian Development: Parthenogenetic Studies. Cambridge, UK: Cambridge University Press pp. 84164.Google Scholar
Kaufman, M.H. & Gardner, R.L. (1974). Diploid and haploid mouse parthenogenetic development following in vitro activation and embryo transfer. J. Embryol. Exp. Morphol. 31, 635–42.Google ScholarPubMed
Kaufman, M.N., Lee, K.K.H. & Speirs, S. (1989). Post-implantation development and cytogenetic analysis of diandric heterozygous diploid mouse embryos. Cytogenet. Cell Genet. 52, 15–8.CrossRefGoogle ScholarPubMed
Kirchhof, N., Carnwath, J.W., Lemme, E., Anastassiadis, K., Schöler, H. & Niemann, H. (2000). Expression pattern of Oct-4 in preimplantation embryos of different species. Biol. Reprod. 63, 1698–705.CrossRefGoogle ScholarPubMed
Lagutina, I., Lazzari, G., Duchi, R. & Galli, C. (2004). Developmental potential of bovine androgenetic and parthenogenetic embryos: a comparative study. Biol. Reprod. 70, 400–5.CrossRefGoogle ScholarPubMed
Latham, K.E., & Solter, D. (1991). Effect of egg composition on the developmental 568 capacity of androgenetic mouse embryos. Development 113, 561–8.CrossRefGoogle Scholar
Liu, C.T., Chen, C.H., Cheng, S.P. & Ju, J.C. (2002). Parthenogenesis of rabbit oocytes activated by different stimuli. Anim. Reprod. Sci. 70, 267–76.CrossRefGoogle ScholarPubMed
Loi, P., Ledda, S., Fulka, J. Jr., Cappai, P., & Moor, R.M. (1998). Development of parthenogenetic and cloned ovine embryos: effect of activation protocols. Biol. Reprod. 58, 1177–87.CrossRefGoogle ScholarPubMed
MacGrath, J. & Solter, D. (1983). Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220, 1300–3.CrossRefGoogle Scholar
MacGrath, J., & Solter, D. (1984). Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–83.CrossRefGoogle Scholar
Machaty, Z., Wang, W.H., Day, B.N. & Prather, R.S. (1997). Complete activation of porcine oocytes induced by the sulfhydryl reagent, thimerosal. Biol. Reprod. 57, 1123–7.CrossRefGoogle ScholarPubMed
Méo, S.C., Yamazaki, W., Ferreira, C.R., Perecin, F., Saraiva, N.Z., Leal, C.L. & Garcia, J.M. (2007). Parthenogenetic activation of bovine oocytes using single and combined strontium, ionomycin and 6-dimethylaminopurine treatments. Zygote 15, 295306.CrossRefGoogle ScholarPubMed
Miki, H., Hirose, M., Ogonuki, N., Inoue, K., Kezuka, F., Honda, A., Mekada, K., Hanaki, K. I., Iwafune, H., Yoshiki, A., Ishino, F. & Ogura, A. (2009). Efficient production of androgenetic embryos by round spermatid injection. Genesis 47, 155–60.CrossRefGoogle ScholarPubMed
Obata, Y., Ono, Y., Akuzawa, H., Kwon, O.Y., Yoshizawa, M. & Kono, T. (2000). Post- implantation development of mouse androgenetic embryos produced by in-vitro fertilization of enucleated oocytes. Hum. Reprod. 15, 874–80.CrossRefGoogle ScholarPubMed
Revazova, E.S., Turovets, N.A., Kochetkova, O.D., Kindarova, L.B., Kuzmichev, L.N., Janus, J.D. & Pryzhkova, M.V. (2007). Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9, 432–49.CrossRefGoogle ScholarPubMed
Rho, G.J., Wu, B., Kawarsky, S., Leibo, S.P. & Betteridge, K.J. (1998). Activation regimens to prepare bovine oocytes for intracytoplasmic sperm injection. Mol. Reprod. Dev. 50, 485–92.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Salamone, D., Barañao, L., Santos, C., Bussmann, L., Artuso, J., Werning, C., Prync, A., Carbonetto, C., Dabsys, S., Munar, C.et al. (2006). High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow. J. Biotechnol. 124, 469–72.CrossRefGoogle ScholarPubMed
SAS Institute Inc. SAS/STAT User's Guide. Version 6. 4th Edn. (1989). SAS Institute Inc. Cary NC, USA943 pp.Google Scholar
Surani, M.A.H, Barton, S.C. & Norris, M.L. (1984). Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature Lond. 308, 548–50.CrossRefGoogle ScholarPubMed
Surani, M.A.H., Barton, S.C. & Norris, M.L. (1986). Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell 45, 127–36.CrossRefGoogle ScholarPubMed
Susko-Parrish, J.L., Leibfried-Rutledge, M.L., Northey, D.L., Schutzkus, V. & First, N.L. (1994). Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Dev. Biol. 166, 729–39.CrossRefGoogle ScholarPubMed
Vajta, G., Peura, T.T., Holm, P., Paldi, A., Greve, T., Trouson, A.O. & Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system. Mol. Reprod. Dev. 55, 256–64.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Van De Velde, A., Liu, L., Bols, P.E., Ysebaert, M.T. & Yang, X. (1999). Cell allocation and chromosomal complement of parthenogenetic and IVF bovine embryos. Mol. Reprod. Dev. 54, 5762.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Vichera, G., Alfonso, J., Duque, C.C., Silvestre, M.A., Pereyra-Bonnet, F., Fernandez-Martín, R. & Salamone, D. (2009). Chemical activation with a combination of ionomycin and dehydroleucodine for production of parthenogenetic, ICSI and cloned bovine embryos. Reprod. Dom. Anim. 45, e30612.Google Scholar
Vichera, G., Moro, L. & Salamone, D. (2010). Efficient transgene expression in IVF and parthenogenetic bovine embryos by intracytoplasmic injection of DNA–liposome complexes. Reprod. Domest. Anim. 46, 214–20.CrossRefGoogle Scholar
Wells, D.N., Misica, P.M. & Tervit, H.R. (1999). Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol. Reprod. 60, 9961005.CrossRefGoogle ScholarPubMed
Yi, Y.J. & Park, C.S. (2005). Parthenogenetic development of porcine oocytes treated by ethanol, cycloheximide, cytochalasin B and 6-dimethylaminopurine. Anim. Reprod. Sci. 86, 297304.CrossRefGoogle ScholarPubMed
Yi, M., Hong, N. & Hong, Y. (2009). Generation of medaka fish haploid embryonic stem cells. Science 326, 430–3.CrossRefGoogle ScholarPubMed