Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T23:54:16.370Z Has data issue: false hasContentIssue false

Inositol triphosphate receptors in sea urchin sperm

Published online by Cambridge University Press:  26 September 2008

Otilia Zapata
Affiliation:
Instituto de Biotecnología-UNAM, Cuernavaca, Mexico, University of Washington, Seattle, USA, Laboratorium voor Fysiologie, KULeuven, Belgium, and Departments of Biochemistry and Anatomy, University of Iowa, USA
James Ralston
Affiliation:
Instituto de Biotecnología-UNAM, Cuernavaca, Mexico, University of Washington, Seattle, USA, Laboratorium voor Fysiologie, KULeuven, Belgium, and Departments of Biochemistry and Anatomy, University of Iowa, USA
Carmen Beltraán
Affiliation:
Instituto de Biotecnología-UNAM, Cuernavaca, Mexico, University of Washington, Seattle, USA, Laboratorium voor Fysiologie, KULeuven, Belgium, and Departments of Biochemistry and Anatomy, University of Iowa, USA
Jan B. Parys
Affiliation:
Instituto de Biotecnología-UNAM, Cuernavaca, Mexico, University of Washington, Seattle, USA, Laboratorium voor Fysiologie, KULeuven, Belgium, and Departments of Biochemistry and Anatomy, University of Iowa, USA
Ji Long Chen
Affiliation:
Instituto de Biotecnología-UNAM, Cuernavaca, Mexico, University of Washington, Seattle, USA, Laboratorium voor Fysiologie, KULeuven, Belgium, and Departments of Biochemistry and Anatomy, University of Iowa, USA
Frank J. Longo
Affiliation:
Instituto de Biotecnología-UNAM, Cuernavaca, Mexico, University of Washington, Seattle, USA, Laboratorium voor Fysiologie, KULeuven, Belgium, and Departments of Biochemistry and Anatomy, University of Iowa, USA
Alberto Darszon*
Affiliation:
Instituto de Biotecnología-UNAM, Cuernavaca, Mexico, University of Washington, Seattle, USA, Laboratorium voor Fysiologie, KULeuven, Belgium, and Departments of Biochemistry and Anatomy, University of Iowa, USA
*
Dr Albert Darszon, Instituto de Biotecnología, postal 510-3 Cuernavaca, MO. 62250, Mexico. Tel: (52-73) 29 16 50. Fax: (52-73) 17 23 88. e-mail: darszon@ibt.unam.mx.

Summary

Inositol 1,4,5-triphosphate (Ins(1,4,5)P3) is a second messenger that regulates Ca2+ channels in many important cell signalling pathways. In sea urchin sperm the outer investment of the egg triggers the acrosome reaction (AR) that involves Ins(1,4,5)P3 production and the opening of two Ca2+ channels. Here we have sought to identify a high-affinity Ins(1,4,5)P3 receptor in Strongylocentrotus purpuratus sperm. An Ins(1,4,5)P3 binding component was affinity-purified 12-fold from sperm extracts. It displayed similar characteristics to the Ins(1,4,5)P3 receptor from other sources: pH-dependent high affinity for Ins(1,4,5)3(KD=261 nM), a τ1/2 of association and dissociation of 50 and 40s, respectively, specificity (IC)50>5μM for Ins (1)P1, Ins(1,4)P2 and Ins(1,3,4,5 P4), and pharmacological sensitivity 10 and 100μ heparin/ml inhibited 75% and 100% binding respectively). An antibody against the carboxy-terminal of the type I Ins(1,4,5)P3 receptor of somatic cells recognised a Plasma membrane component in the sperm head and less intensely in the flagella. This antibody also recongnised a 240 kDa band from isolated head plasma membranes, and weakly in flagellar membrane. This IP3 receptor-like protein may mediate the sustained uptake of Ca2+ through the second Ca2+ chanel opened during the AR.

Type
Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akera, T. & Cheng, V.K. (1977). A simple method for determination of affinity and binding site concentration in receptor bindig studies. Biochim. Biophys. Acta., 470, 412–23.Google Scholar
Berridge, M.J. (1993). Inositol trisphosphate and calcium singnalling. Nature 361, 315–25.CrossRefGoogle Scholar
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–54.CrossRefGoogle ScholarPubMed
Chadwick, C.C., Saito, A. & Fleischer, S. (1990). Isolation and characterization of inositol trisposphate receptor from smooth muscle. Proc. Natl. Acad. Sci. USA 87, 2132–6.CrossRefGoogle Scholar
Cuéllar-Mata, P., Martínez-Cadena, G., Castellano, L.E., Aldana-Velóz, G., Novoa-Martínez, G., Vargas, I., Darszon, A. & García-Soto, J. (1995). Multiple G-biniding proteins in sea urchin sperm: evidence for Gs and small G-proteins. Dev. Growth Differ. 35, 173–81.Google Scholar
Darszon, A., Labarca, P., Beltrán, C., García-Soto, J. & Liévano, A. (1994).Sea urchin sperm: an ion channel reconstruction study case. Methods: A Companion to Methods Enzymol. 6, 3750.Google Scholar
Darszon, A., Liévano, A. & Beltrán, C. (1996). Ion channels: Key elements in gamete signaling.Curr. Topics Dev. Biol. 34, 117–67.CrossRefGoogle ScholarPubMed
Domino, S.E. & Garbers, D.L. (1988). The fucose sulfate glycoconjugate that induces an acrosome reaction in spermatozoa stimulates inositol 1,4,5-trisphosphate accumulation. J. Biol. Chem. 263, 690–5.Google Scholar
Domino, S.E. & Garbers, D.L. (1989). Activation of phospholipase D by the fucose-sulfate glycoconjugate that induces an acrosome reaction in spermatozoa. J. Biol. Chem. 264, 9412–19.Google Scholar
Donié, F., Hülser, E. & Reiser, G. (1990). High affinity inositol 1,3,4,5-terakisphosphate receptor from cerebellum: solubilization, partial purification and characterization. FEBS Lett. 268, 194–8.Google Scholar
Essen, A. (1978). A simple method for quantitative, semi-quantitative and qualitative assay of protein. Anal. Biochem. 89, 264–73.CrossRefGoogle Scholar
Fujino, I., Yamada, N., Miyawaki, A., Hasegawa, M., Furuichi, T. & Mikoshiba, K. (1995). Differential expression of type 2 and type 3 inositol 1,4,5-trisphophate receptor mRNA in various mouse tissues: in situ hybridization study. Cell. Tissue Res. 280, 201–10.Google Scholar
Furuichi, T., Yoshikawa, S., Miyawak, A., Wada, K., Maeda, N. & Mikoshiba, K. (1989). Primary structure and functional expression of the inositol 1,4,5-trisphosphate-biding protein P400. Nature. 342, 32–8.CrossRefGoogle ScholarPubMed
Garbers, D.L. (1989). Molecular basis of fertilization. Annu. Rev. Biochem. 58, 719–42.Google Scholar
Garbers, D.L., Kopf, G.S., Tubb, D.J. & Olson, G. (1983). The elevation of sperm cyclic AMP concentrations by a fucose-sulfate rich complex associated with eggs. I. Structural characterization. Biol. Reprod. 29, 1211–20.Google Scholar
García-Soto, J., González-Martínez, M., de Delatorre, L. & Darszon, A. (1987). Internal pH can regulate Ca2+ uptake and the acrosome reaction in sea urchin sperm. Dev. Biol. 120, 112–20.CrossRefGoogle ScholarPubMed
García-Soto, J., Mourelle, M., Vargas, I., De, La Torre L, Ramírez, E., López-Colomé, A.M. & Darszon, A. (1988). Sea urchin head plasma membranes: characteristics and egg jelly induced Ca2+ and Na+ uptake. Biochem. Biophys. Acta 944, 112.Google Scholar
González-Martínez, M.T. & Darszon, A. (1987). A fast transient hyperpolarization occurs during the sea urchin sperm acrosome reaction induced by egg jelly. FEBS Lett. 218, 247–50.Google Scholar
González-Martínez, M.T., Guerrero, A., Morales, E., de Delatorre, L. & Darszona, A. (1992). A depolarizataion can trigger Ca2+ uptake and the acrosome reaction when preceded by a hyperpolarization in L. pictus sea urchin sperm. Dev. Biol. 150, 193202.Google Scholar
Guerrero, A. & Darszon, A. (1989 a). Egg jelly triggers a calcium influx which inactivates and is inhibited by calmodulin antagonists in the sea urchin sperm. Biochim. Biophys. Acta 980, 109–16.Google Scholar
Guerrero, A. & Darszon, A. (1989 b). Evidence for the activation of two different Ca2+ channels during the egg jelly induced acrosome reaction of sea urchin sperm. j. Biol. Chem. 264, 19 593–9.Google Scholar
Guillemete, G., Balla, T., Baukal, A.J. & Catt, K.J. (1988). Characterization of inositol 1,4,5-trisphosphate receptors and calcium mobilization in hepatic plasma memberane fractions. J. Biol. Chem. 263, 4541–8.Google Scholar
Hasegawa, T. & Kumagi, S. (1989). A G-protein of sarco-plasmic reticulum of skeletal muscle is activated by caffeine or inositol trisphosphate. FEBS Lett. 244, 283–6.CrossRefGoogle ScholarPubMed
Irvine, R.F. & Moor, R.M. (1986). Microinjection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem. j. 240, 917–20.Google Scholar
Kalinoski, D., Aldinger, S.B., Boyle, A.G., Huque, T., Marecek, J.F., Prestwich, G.D. & Restrepo, D. (1992). Characterization of a novel inositol 1,4,5-triphosphate receptor in isolated olfactory cilia. Biochem. j. 281, 449–56.Google Scholar
Kopf, G.S. & Garbers, D.L. (1980). Calcium and fucose-rich polymer regulate sperm cyclic nucleotide metabolism and the acrosome reaction. Biol. Reprod. 22, 1118–26.Google Scholar
Kopf, G.S., Woolkalis, M.J. & Gerton, G.L. (1986). Evidence for a guanine nucleotide-binding regulatory protein in invertebrate and mammalian sperm: identification by islet activating protein catalyzed ADP ribosylation and immunochemical methods. J. Biol. Chem. 261, 7327–31.Google Scholar
Kuno, M. & Gardner, P. (1987). Ion channels activated by inositol 1,4,5-trisphosphate in plasma memberane of human T-lymphocytes. Nature 326, 301–4.CrossRefGoogle Scholar
Lee, H.C., Johnson, C. & Epel, D. (1983). Changes in internal pH associated with the initiation of motility and the acrosome reaction of sea urchin sperm. Dev. Biol. 95, 3145.CrossRefGoogle ScholarPubMed
Liévano, A., Vega-Saenz de, Miera E.C. & Darszon, A. (1990). Ca2+ channels from the sea urchin sperm plasma membrane. J. Gen. Physiol. 95, 273–96.Google Scholar
Liévano, A., Santi, C.M., Serrano, C.J., Treviño, C.L., Bellvé, A.R., Hernández-Cruz, A. & Darszon, A.) (1996) T-type Ca2+ channels and α1E. expression in the sperm acrosome reaction. FEBS Lett. 388, 150–4.CrossRefGoogle ScholarPubMed
Maeda, N., Niinobe, M. & Mikoshiba, K. (1990). A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5-trisphosphate (InsP3) receptor protein. Purification and characterization of InsP3 receptor complex. EMBO J. 9, 61–7.CrossRefGoogle ScholarPubMed
Meyer, T., Wensel, T. & Strayer, L. (1990). Kinetics of calcium channel opening by inositol 1,4,5-trisphosphate. Biochemistry 29, 32–7.Google Scholar
Mignery, G.A., Sudof, T.C., Takei, K. & De Camilli, P. (1989). Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature. 342, 192–5.CrossRefGoogle ScholarPubMed
Mignery, G.A., Newton, C.I., Archer, B.T. III. & Sudhof, T.C. (1990). Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 265, 12 679–85.CrossRefGoogle ScholarPubMed
Monkawa, T., Miyawaki, A., Sugiyama, T., Yoneshima, H., Yamamoto-Hino, M., Furuichi, T., Saruta, T., Hasegawa, M. & Mikoshiba, K. (1995). Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor sub-units. J. Biol. Chem. 270, 14700–4.Google Scholar
Mourey, R.J., Verma, A., Supattapone, S. & Snyder, S.H. (1990). Purification and characterization of the inositol 1,4,5-trisphosphate receptor protein from rat vas deferens. Biochem. j. 272, 383–9.Google Scholar
Parys, J.B., Sernett, S.W., DeLisle, S., Snyder, P.M., Welsh, M.J., & Campbell, K.P., (1992). Isolation, characterization and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. J. Biol. Chem. 267, 18776–82.CrossRefGoogle ScholarPubMed
Ross, C.A., Danoff, S.K., Schell, M.J., Snyder, S.H., & Urlich, A. (1992). Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. Proc. Natl. Acad. sci. USA 89, 4265–9.CrossRefGoogle ScholarPubMed
Santi, M.C., Darszon, A. & Hernández-Cruz, A. (1996). A dihydropridine-sensitive T-type Ca2+ current is the main Ca2+ current carrier in mouse primary spermatocytes. Am. J. Physiol. 271, C 1583–93.CrossRefGoogle ScholarPubMed
Schackmann, R.W., Eddy, E.M. & Shapiro, B.M. (1978). The acrosome reaction and activation of Strongylocentrotus purpuratus sperm: ion requirements and movements. Dev. Biol. 65, 483–95.Google Scholar
SeGall, G.K., & Lennarz, W.J. (1979). Chemical characterization of the component of the jelly coat from sea urchin eggs responsible for induction of the acrosome reaction. Dev. Biol. 71, 3348.Google Scholar
Snyder, S.H. & Supattapone, S. (1989). Isolation and functional characterization of an inositol trisphosphate receptor from brain. Cell Calcium. 10, 337–42.Google Scholar
Supattapone, S., Worley, P.F., Baraban, J.M. & Snyder, S.H. (1988). Solubilization, purification and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 263, 1530–4.Google Scholar
Taylor, C.W. & Richardson, A. (1991). Structure and function of inositol trisphosphate receptors. Pharmacol. Ther. 51, 97137.Google Scholar
Taylor, C.W., Blakeley, D.M., & Brown, K.D. (1988). Guanine nucleotides stimulate hydrolysis of phosphatidylinositol and polyphosphoinositides in permeabilized Swiss 3T3 cells. FEBS Lett. 237, 163–7.Google Scholar
Theibert, B., Supattapone, S., Ferris, D., Danoff, K., Evans, K. & Snyder, H. (1990). Solubilization and separation of inositol proteins and metabolizing enzymes in rat brain. Biochem. J. 267, 441–5.Google Scholar
Tilney, L.G., Kiehart, D., Sardet, C. & Tilney, M. (1978). Polymerization of the actin. IV. Role of Ca+, and H+, in the assembly of actin memberane fusion in the acrosomal reaction of echinoderm sperm. J. Cell Biol. 77, 536–50.Google Scholar
Trimmer, J.S., Schackmann, R.W. & Vacquier, V.D. (1986). Monoclonal antibodies increase intracellular Ca2+ in sea urchin spermatozoa. Proc. Natl. Acad. Sci. USA 83, 9055–9.Google Scholar
Von Tscharner, V., Prod'hom, B., Baggiolini, M. & Reuter, H. (1986). Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 324, 369–72.CrossRefGoogle ScholarPubMed
Walensky, D. & Snyder, H. (1995). Inositol 1,4,5-trisphosphate receptor selectively localized to the acrosomes of mammalian sperm. J. Cell Biol. 130, 857–69.Google Scholar
Wassarman, P.M. (1990). profile of a mammalian sperm receptor. Development. 108, 117.CrossRefGoogle ScholarPubMed
White, M., Varney, A., Watson, P., Rigby, S., Changsheng, L., Ward, G., Reese, B., Graham, C. & Williams, P. (1991). Influence of Mg2+ and pH on NMR spectra and radioligand binding of inositol 1,4,5-trisphosphate. Biochem. J. 278, 759–64.Google Scholar
Worley, P.F., Baraban, J.M., Supattapone, S., Wilson, V.S. & Snyder, S.H. (1987). Characterization of inositol trisphosphate receptor binding in the brain: regulation by pH and calcium. J. Biol. Chem. 262, 12 132–6.Google Scholar
Yue, C., White, K.L., Reed, W.A. & Bunch, T.D. (1995). The existence of inositol 1,4,5-trisphosphate and ryanodine receptors in mature bovine oocytes. Development 121, 2645–54.CrossRefGoogle ScholarPubMed