Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T21:00:59.074Z Has data issue: false hasContentIssue false

EH domain binding protein 1-like 1 (EHBP1L1), a protein with calponin homology domain, is expressed in the rat testis

Published online by Cambridge University Press:  29 July 2020

Massimo Venditti
Affiliation:
Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate ‘F. Bottazzi’, Università degli Studi della Campania ‘Luigi Vanvitelli’ via Costantinopoli, 16-80138 – Napoli, Italy
Aldo Donizetti
Affiliation:
Dipartimento di Biologia, Università di Napoli ‘Federico II, via Cinthia’, 21-80126 – Napoli, Italy
Francesco Aniello*
Affiliation:
Dipartimento di Biologia, Università di Napoli ‘Federico II, via Cinthia’, 21-80126 – Napoli, Italy
Sergio Minucci*
Affiliation:
Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate ‘F. Bottazzi’, Università degli Studi della Campania ‘Luigi Vanvitelli’ via Costantinopoli, 16-80138 – Napoli, Italy
*
Authors for correspondence: Sergio Minucci. Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate ‘F. Bottazzi’, Università degli Studi della Campania ‘Luigi Vanvitelli’ via Costantinopoli, 16-80138Napoli, Italy. Tel: +39081-5665829. E-mail: sergio.minucci@unicampania.it. Francesco Aniello. Dipartimento di Biologia, Università di Napoli ‘Federico II, via Cinthia’, 21-80126Napoli, Italy. Tel: +39081-2535014. E-mail: faniello@unina.it.
Authors for correspondence: Sergio Minucci. Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate ‘F. Bottazzi’, Università degli Studi della Campania ‘Luigi Vanvitelli’ via Costantinopoli, 16-80138Napoli, Italy. Tel: +39081-5665829. E-mail: sergio.minucci@unicampania.it. Francesco Aniello. Dipartimento di Biologia, Università di Napoli ‘Federico II, via Cinthia’, 21-80126Napoli, Italy. Tel: +39081-2535014. E-mail: faniello@unina.it.

Summary

In this paper, with the aim to find new genes involved in mammalian spermatogenesis, we isolated, for the first time in the rat testis, a partial cDNA clone that encoded EH domain binding protein 1-like 1 (Ehbp1l1), a protein that has a single calponin homology domain (CH). Bioinformatic analysis showed that EHBP1l1 contains three domains: the N-terminal C2-like, the CH and the C-terminal bivalent Mical/EHBP Rab binding (bMERB) domains, which are evolutionarily conserved in vertebrates. We found that Ehbp1l1 mRNA was expressed in several rat tissues, including the liver, intestine, kidney and also in the testis during its development, with a higher level in testis from 12-month-old animals. Interestingly, in situ hybridization experiments revealed that Ehbp1l1 is specifically expressed by types I and II spermatocytes, this result was validated by RT-PCR performed on total RNA obtained from enriched fractions of different testicular cell types. As EHBP1l1 has been described as linked to vesicular transport to the actin cytoskeleton and as an effector of the small GTPase Rab8, we hypothesized that it could participate both in cytoskeletal remodelling and in the regulation of vesicle sorting from the trans-Golgi network to the apical plasma membrane. Our findings provide a better understand of the molecular mechanisms of the differentiation process of spermatogenesis; Ehbp1l1 may also be used as a new marker of testicular activity.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

In memory of our friend, Professor Anna Cardone.

References

Ang, AL, Taguchi, T, Francis, S, Fölsch, H, Murrells, LJ, Pypaert, M, Warren, G and Mellman, I (2004). Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J Cell Biol 167, 531–43.CrossRefGoogle ScholarPubMed
Burgstaller, G and Gimona, M (2004). Actin cytoskeleton remodelling via local inhibition of contractility at discrete microdomains. J Cell Sci 117, 223–31.CrossRefGoogle ScholarPubMed
Chauhan, BK, Reed, NA, Zhang, W, Duncan, MK, Kilimann, MW and Cvekl, A (2002). Identification of genes downstream of Pax6 in the mouse lens using cDNA microarrays. J Biol Chem 277, 11539–48.CrossRefGoogle ScholarPubMed
Chemek, M, Venditti, M, Boughamoura, S, Mimouna, SB, Messaoudi, I and Minucci, S (2018). Involvement of testicular DAAM1 expression in zinc protection against cadmium-induced male rat reproductive toxicity. J Cell Physiol 233, 630–40.CrossRefGoogle ScholarPubMed
Childs, TJ, Watson, MH, Novy, RE, Lin, JJ and Mak, AS (1992). Calponin and tropomyosin interactions. Biochim Biophys Acta 1121, 41–6.CrossRefGoogle ScholarPubMed
Chu, DS and Shakes, DC (2013). Spermatogenesis . Adv Exp Med Biol 757, 171203.CrossRefGoogle ScholarPubMed
Connolly, AA, Osterberg, V, Christensen, S, Price, M, Lu, C, Chicas-Cruz, K, Lockery, S, Mains, PE and Bowerman, B (2014). Caenorhabditis elegans oocyte meiotic spindle pole assembly requires microtubule severing and the calponin homology domain protein ASPM-1. Mol Biol Cell 25, 1298–311.CrossRefGoogle ScholarPubMed
de Mateo, S and Sassone-Corsi, P (2014). Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule. Semin Cell Dev Biol 29, 8492.CrossRefGoogle ScholarPubMed
Dunleavy, JEM, O’Bryan, M, Stanton, PG and O’Donnell, L (2019). The cytoskeleton in spermatogenesis. Reproduction 157, 5372.CrossRefGoogle ScholarPubMed
Eguchi, T, Kuwahara, T, Sakurai, M, Komori, T, Fujimoto, T, Ito, G, Yoshimura, SI, Harada, A, Fukuda, M, Koike, M and Iwatsubo, T (2018). LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis. Proc Natl Acad Sci USA 115, E911524.CrossRefGoogle ScholarPubMed
Ergoli, M, Venditti, M, Picillo, E, Minucci, S and Politano, L (2020). Study of expression of genes potentially responsible for reduced fitness in patients with Myotonic dystrophy type 1 and identification of new biomarkers of testicular function. Mol Reprod Dev 87, 4552.CrossRefGoogle ScholarPubMed
Escalier, D (2001). Impact of genetic engineering on the understanding of spermatogenesis. Hum Reprod Update 7, 191210.CrossRefGoogle ScholarPubMed
Falvo, S, Chieffi Baccari, G, Spaziano, G, Venditti, M, Rosati, L, Di Fiore, MM and Santillo, A (2018). StAR protein and steroidogenic enzyme expressions in the rat Harderian gland. C R Biol 341, 160166.CrossRefGoogle ScholarPubMed
Ferrara, D, Izzo, G, Pariante, P, Donizetti, A, d’Istria, M, Aniello, F and Minucci, S (2010). Expression of prothymosin alpha in meiotic and post-meiotic germ cells during the first wave of rat spermatogenesis. J Cell Physiol 224, 362–8.CrossRefGoogle ScholarPubMed
Friedberg, F (2010). Singlet CH domain containing human multidomain proteins: an inventory. Mol Biol Rep 37, 1531–9.CrossRefGoogle Scholar
Fujii, T and Koizumi, Y (1999). Identification of the binding region of basic calponin on alpha and beta tubulins. J Biochem 125, 869–75.CrossRefGoogle ScholarPubMed
Fujii, T, Takagi, H, Arimoto, M, Ootani, H and Ueeda, T (2000). Bundle formation of smooth muscle desmin intermediate filaments by calponin and its binding site on the desmin molecule. J Biochem 127, 457–65.CrossRefGoogle ScholarPubMed
Galkin, VE, Orlova, A, VanLoock, MS and Egelman, EH (2003). Do the utrophin tandem calponin homology domains bind F-actin in a compact or extended conformation? J Mol Biol 331, 967–72.CrossRefGoogle ScholarPubMed
Galkin, VE, Orlova, A, Salmazo, A, Djinović-Carugo, K and Egelman, EH (2010). Opening of tandem calponin homology domains regulates their affinity for F-actin. Nat Struct Mol Biol 17, 614–6.CrossRefGoogle ScholarPubMed
Gao, J, Liao, J and Yang, GY (2009). CAAX-box protein, prenylation process and carcinogenesis. Am J Transl Res 1, 312–25.Google ScholarPubMed
Gimona, M and Mital, R (1998). The single CH domain of calponin is neither sufficient nor necessary for F-actin binding. J Cell Sci 111, 1813–21.Google ScholarPubMed
Gimona, M and Winder, SJ (1998). Single calponin homology domains are not actin-binding domains. Curr Biol 8, R6745.CrossRefGoogle Scholar
Guilherme, A, Soriano, NA, Bose, S, Holik, J, Bose, A, Pomerleau, DP, Furcinitti, P, Leszyk, J, Corvera, S and Czech, MP (2004). EHD2 and the novel EH domain binding protein EHBP1 couple endocytosis to the actin cytoskeleton. J Biol Chem 279, 10593–605.CrossRefGoogle ScholarPubMed
Guo, X, Shen, J, Xia, Z, Zhang, R, Zhang, P, Zhao, C, Xing, J, Chen, L, Chen, W, Lin, M et al. (2010). Proteomic analysis of proteins involved in spermiogenesis in mouse. J Proteome Res 9, 1246–56.CrossRefGoogle Scholar
Ishisaki, Z, Takaishi, M, Furuta, I and Huh, N (2001). Calmin, a protein with calponin homology and transmembrane domains expressed in maturing spermatogenic cells. Genomics 74, 172–9.CrossRefGoogle ScholarPubMed
Kaneko, T, Li, L and Li, SS (2008). The SH3 domain--a family of versatile peptide- and protein-recognition module. Front Biosci 13, 4938–52.CrossRefGoogle ScholarPubMed
Kierszenbaum, AL, Rivkin, E and Tres, LL (2011). Cytoskeletal track selection during cargo transport in spermatids is relevant to male fertility. Spermatogenesis 1, 221–30.CrossRefGoogle ScholarPubMed
Leinweber, BD, Leavis, PC, Grabarek, Z, Wang, CL and Morgan, KG (1999). Extracellular regulated kinase (ERK). interaction with actin and the calponin homology (CH). domain of actin-binding proteins. Biochem J 344, 117–23.CrossRefGoogle ScholarPubMed
Leinweber, B, Parissenti, AM, Gallant, C, Gangopadhya, SS, Kirwan-Rhude, A, Leavis, PC and Morgan, KG (2000). Regulation of protein kinase C by the cytoskeletal protein calponin. J Biol Chem 275, 40329–36.CrossRefGoogle ScholarPubMed
Lemmon, MA (2008). Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9, 99111.CrossRefGoogle ScholarPubMed
Lin, YH, Ke, CC, Wang, YY, Chen, MF, Chen, TM, Ku, WC, Chiang, HS and Yeh, CH (2017). RAB10 interacts with the male germ cell-specific GTPase-activating protein during mammalian spermiogenesis. Int J Mol Sci 18, pii: E97.CrossRefGoogle ScholarPubMed
Liu, R and Jin, JP (2016). Calponin isoforms CNN1, CNN2 and CNN3, regulators for actin cytoskeleton functions in smooth muscle and non-muscle cells. Gene 585, 143–53.CrossRefGoogle ScholarPubMed
McLean, DJ, Friel, PJ, Johnston, DS and Griswold, MD (2003). Characterization of spermatogonial stem cell maturation and differentiation in neonatal mice. Biol Reprod 69, 2085–91.CrossRefGoogle ScholarPubMed
Meistrich, ML (1977). Separation of spermatogenic cells and nuclei from rodent testes. Methods Cell Biol 15, 1554.CrossRefGoogle ScholarPubMed
Mintz, L, Galperin, E, Pasmanik-Chor, M, Tulzinsky, S, Bromberg, Y, Kozak, CA, Joyner, A, Fein, A and Horowitz, M (1999). EHD1--an EH-domain-containing protein with a specific expression pattern. Genomics 59, 6676.CrossRefGoogle ScholarPubMed
Monesi, V (1965). Synthetic activities during spermatogenesis in the mouse RNA and protein. Exp Cell Res 39, 197224.CrossRefGoogle ScholarPubMed
Monesi, V, Geremia, R, D’Agostino, A and Boitani, C (1978). Biochemistry of male germ cell differentiation in mammals: RNA synthesis in meiotic and postmeiotic cells. Curr Top Dev Biol 12, 1136.CrossRefGoogle ScholarPubMed
Nakajo, A, Yoshimura, S, Togawa, H, Kunii, M, Iwano, T, Izumi, A, Noguchi, Y, Watanabe, A, Goto, A, Sato, T and Harada, A (2016). EHBP1L1 coordinates Rab8 and Bin1 to regulate apical-directed transport in polarized epithelial cells. J Cell Biol 212, 297306.CrossRefGoogle ScholarPubMed
O’Donnell, L (2015). Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis 26, e979623.Google Scholar
Orlova, A, Rybakova, IN, Prochniewicz, E, Thomas, DD, Ervasti, JM and Egelman, EH (2001). Binding of dystrophin’s tandem calponin homology domain to F-actin is modulated by actin’s structure. Biophys J 80, 1926–31.CrossRefGoogle ScholarPubMed
Pariante, P, Dotolo, R, Venditti, M, Ferrara, D, Donizetti, A, Aniello, F and Minucci, S (2016a). First evidence of DAAM1 localization during the post-natal development of rat testis and in mammalian sperm. J Cell Physiol 231, 2172–84.CrossRefGoogle ScholarPubMed
Pariante, P, Dotolo, R, Venditti, M, Ferrara, D, Donizetti, A, Aniello, F and Minucci, S (2016b). Prothymosin alpha expression and localization during the spermatogenesis of Danio rerio. Zygote 24, 583–93.CrossRefGoogle ScholarPubMed
Quesada, P, Atorino, L, Cardone, A, Ciarcia, G and Farina, B (1996). Poly (ADPribosyl).ation system in rat germinal cells at different stages of differentiation. Exp Cell Res 226, 183–90.CrossRefGoogle ScholarPubMed
Rozenblum, GT and Gimona, M (2008). Calponins: adaptable modular regulators of the actin cytoskeleton. Int J Biochem Cell Biol 40, 1990–5.CrossRefGoogle ScholarPubMed
Santillo, A, Venditti, M, Minucci, S, Chieffi Baccari, G, Falvo, S, Rosati, L and Di Fiore, MM (2019). d-Asp upregulates PREP and GluA2/3 expressions and induces p-ERK1/2 and p-Akt in rat testis. Reproduction 158, 357–67.CrossRefGoogle ScholarPubMed
Sassone-Corsi, P (2002). Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296, 2176–8.CrossRefGoogle ScholarPubMed
Senoo, M, Hoshino, S, Mochida, N, Matsumura, Y and Habu, S (2002). Identification of a novel protein p59(scr)., which is expressed at specific stages of mouse spermatogenesis. Biochem Biophys Res Commun 292, 992–8.CrossRefGoogle Scholar
Shannon, KB and Li, R (1999). The multiple roles of Cyk1p in the assembly and function of the actomyosin ring in budding yeast. Mol Biol Cell 10, 283–96.CrossRefGoogle ScholarPubMed
Shi, A, Chen, CC, Banerjee, R, Glodowski, D, Audhya, A, Rongo, C and Grant, BD (2010). EHBP-1 functions with RAB-10 during endocytic recycling in Caenorhabditis elegans. Mol Biol Cell 21, 2930–43.CrossRefGoogle ScholarPubMed
Singh, SM, Bandi, S, Winder, SJ and Mallela, KM (2014). The actin binding affinity of the utrophin tandem calponin-homology domain is primarily determined by its N-terminal domain. Biochemistry 53, 1801–9.CrossRefGoogle ScholarPubMed
Sjöblom, B, Ylänne, J and Djinović-Carugo, K (2008). Novel structural insights into F-actin-binding and novel functions of calponin homology domains. Curr Opin Struct Biol 18, 702–8.CrossRefGoogle ScholarPubMed
Stradal, T, Kranewitter, W, Winder, SJ and Gimona, M (1998). CH domains revisited. FEBS Lett 431, 134–7.CrossRefGoogle ScholarPubMed
Szymanski, PT (2004). Calponin (CaP). as a latch-bridge protein--a new concept in regulation of contractility in smooth muscles. J Muscle Res Cell Motil 25, 719.CrossRefGoogle ScholarPubMed
Takahashi, K, Abe, M, Hiwada, K and Kokubu, T (1988a). A novel troponin T-like protein (calponin). in vascular smooth muscle: interaction with tropomyosin paracrystals. J Hypertens Suppl. 6, S403.CrossRefGoogle ScholarPubMed
Takahashi, K, Hiwada, K and Kokubu, T (1988b). Vascular smooth muscle calponin. A novel troponin T-like protein. Hypertension 11, 620–6.CrossRefGoogle ScholarPubMed
Venditti, M and Minucci, S (2017). Prothymosin alpha expression in the vertebrate testis: a comparative review. Zygote 25, 760–70.CrossRefGoogle ScholarPubMed
Venditti, M and Minucci, S (2019). Subcellular localization of prolyl endopeptidase during the first wave of rat spermatogenesis and in rat and human sperm. J Histochem Cytochem 67, 229243.CrossRefGoogle ScholarPubMed
Venditti, M, Fasano, C, Santillo, A, Aniello, F and Minucci, S (2018a). First evidence of DAAM1 localization in mouse seminal vesicles and its possible involvement during regulated exocytosis. C R Biol 341, 228–34.CrossRefGoogle ScholarPubMed
Venditti, M, Donizetti, A, Fiengo, M, Fasano, C, Santillo, A, Aniello, F and Minucci, S (2018b). Temporal and spatial expression of insulin-like peptide (insl5a and insl5b). paralog genes during the embryogenesis of Danio rerio . J Exp Zool B Mol Dev Evol 330, 3340.CrossRefGoogle ScholarPubMed
Venditti, M, Aniello, F, Santillo, A and Minucci, S (2019). Study on PREP localization in mouse seminal vesicles and its possible involvement during regulated exocytosis. Zygote 27, 160–5.CrossRefGoogle Scholar
Venditti, M, Fasano, C, Minucci, S, Serino, I, Sinisi, AA, Dale, B and Di Matteo, L (2020). DAAM1 and PREP are involved in human spermatogenesis. Reprod Fertil Dev 32, 484–94.CrossRefGoogle ScholarPubMed
Ventela, S, Mulari, M, Okabe, M, Tanaka, H, Nishimune, Y, Toppari, J and Parvinen, M (2000). Regulation of acrosome formation in mice expressing green fluorescent protein as a marker. Tissue Cell 35, 501–7.CrossRefGoogle Scholar
Wu, KC and Jin, JP (2008). Calponin in non-muscle cells. Cell Biochem Biophys 52, 139–48.CrossRefGoogle ScholarPubMed
Zhao, GQ and Garbers, DL (2002). Male germ cell specification and differentiation. Dev Cell 2, 537–47.CrossRefGoogle ScholarPubMed
Zhou, F, Chen, W, Jiang, Y and He, Z (2019). Regulation of long non-coding RNAs and circular RNAs in spermatogonial stem cells. Reproduction 158, 1525.CrossRefGoogle ScholarPubMed