Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T23:46:14.754Z Has data issue: false hasContentIssue false

Definition of three somatic adult cell nuclear transplant methods in zebrafish (Danio rerio): before, during and after egg activation by sperm fertilization

Published online by Cambridge University Press:  12 June 2009

M. Pérez-Camps*
Affiliation:
Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Polytechnic University of Valencia, Camino de Vera 14, 46071 Valencia, Spain. Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Polytechnic University of Valencia, Spain.
J. Cardona-Costa
Affiliation:
Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Polytechnic University of Valencia, Spain. Aquaculture and Environmental Research Group (ACUMA), Polytechnic University of Valencia, Spain.
M. Francisco-Simao
Affiliation:
Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Polytechnic University of Valencia, Spain. Faculty of Agriculture Sciences, Agostinho Neto University, Angola.
F. García-Ximénez
Affiliation:
Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Polytechnic University of Valencia, Spain.
*
All correspondence to: M. Pérez-Camps. Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Polytechnic University of Valencia, Camino de Vera 14, 46071 Valencia, Spain. Tel: +34 963879433. Fax: +34 963877439. e-mail: mipecam@dca.upv.es

Summary

Zebrafish somatic nuclear transplant has only been attempted using preactivated eggs. In this work, three methods to carry out the nuclear transplant using adult cells before, during and after the egg activation/fertilization were developed in zebrafish with the aim to be used in reprogramming studies. The donor nucleus from somatic adult cells was inserted: (method A) in the central region of the egg and subsequently fertilized; (method B) in the incipient animal pole at the same time that the egg was fertilized; and (method C) in the completely defined animal pole after fertilization. Larval and adult specimens were obtained using the three methods. Technical aspects related to temperature conditions, media required, egg activation/fertilization, post-ovulatory time of the transplant, egg aging, place of the donor nucleus injection in each methodology are presented. In conclusion, the technical approach developed in this work can be used in reprogramming studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amanze, D. & Iyengar, A. (1990). The micropyle: a sperm guidance system in teleost fertilization. Development 109, 495500.CrossRefGoogle ScholarPubMed
Bubenshchikova, E., Kaftanovskaya, E., Motosugi, N., Fujimoto, T., Arai, K., Kinoshita, M., Hashimoto, H., Ozato, K. & Wakamatsu, Y. (2007). Diploidized eggs reprogram adult somatic cell nuclei to pluripotency in nuclear transplant in medaka fish. Dev. Growth Differ. 29, 669709.Google Scholar
Bubenshchikova, E., Ju, B., Pristyazhnyuk, I., Niwa, K., Kaftanovskaya, E., Kinoshita, M., Ozato, K. & Wakamatsu, Y. (2005). Generation of fertile and diploid fish, medaka (Oryzias latipes), from nuclear transplantation of blastula and four-somite-stage embryonic cells into non-enucleated unfertilized eggs. Cloning Stem Cells 7, 255–64.CrossRefGoogle Scholar
Byrne, J.A., Pedersen, D.A., Clepper, L.L., Nelson, M., Sanger, W.G., Gokhale, S., Wolf, D.P. & Mitalipov, S.M. (2007). Producing primate embryonic stem cells by somatic cell nuclear transplant. Nature 450, 497502.CrossRefGoogle Scholar
Campbell, K.H.S., McWhir, J., Ritchie, W.A. & Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–6.CrossRefGoogle ScholarPubMed
Diter, A., Guyomard, R. & Chourrout, D. (1988). Gene segregation in induced tetraploid rainbow trout: genetic evidence of preferential pairing of homologous chromosomes. Genome 30, 547–53.CrossRefGoogle ScholarPubMed
French, A.J., Adams, C.A., Anderson, L.S., Kitchen, J.R., Hughes, M.R. & Wood, S.H. (2008). Development of human cloned blastocysts following somatic cell nuclear transplant with adult fibroblasts. Stem Cells 26, 485–93.CrossRefGoogle Scholar
Giraldo, A.M., Hylan, D.A., Ballard, C.B., Purpera, M.N., Vaught, T.D., Lynn, J.W., Godke, R.A. & Bondioli, K.R. (2008). Effect of epigenetic modifications of donor somatic cells on the subsequent chromatin remodeling of cloned bovine embryos. Biol. Reprod. 78, 832–40.CrossRefGoogle ScholarPubMed
Huang, H., Ju, B., Lee, K. & Lin, S. (2003). Protocol for nuclear transplant in zebrafish. Cloning Stem Cells 5, 333–7.CrossRefGoogle Scholar
Kaftanovskaya, E., Motosugi, N., Kinoshita, M., Ozato, K. & Wakamatsu, Y. (2007). Ploidy mosaicism in well-developed nuclear transplants produced by transplant of adult somatic cell nuclei to non-enucleated eggs of medaka. Dev. Growth Differ. 49, 691–8.CrossRefGoogle Scholar
Kikyo, N., Wade, P.A., Guschin, D., Ge, H. & Wolffe, A.P. (2000). Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science 289, 2360–2.CrossRefGoogle Scholar
Lee, K.W., Webb, S.E. & Miller, A.L. (1999). A wave of free cytosolic calcium traverses zebrafish eggs on activation. Dev. Biol. 214, 168–80.CrossRefGoogle ScholarPubMed
Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3, 662–73.CrossRefGoogle Scholar
Pelegri, F. (2002). Mutagenesis. In Zebrafish. A Practical Approach (eds Nüsslein-Volhard, C. & Dahm, R.), pp. 157–61. Oxford: Oxford University Press.Google Scholar
Peruzzi, S. & Chatain, B. (2003). Induction of tetraploid gynogenesis in the European sea bass (Dicentrarchus labrax L.) Genetica 119, 225–8.CrossRefGoogle Scholar
Poleo, G.A., Denniston, R.S., Reggio, B.C., Godke, R.A. & Tiersch, T.R. (2001). Fertilization of eggs of zebrafish, Danio rerio, by intracytoplasmic sperm injection. Biol. Reprod. 65, 961–6.CrossRefGoogle ScholarPubMed
Shiga, K., Fujita, T., Hirose, K., Sasae, Y. & Nagai, T. (1999). Production of calves by transplant nuclei from cultured somatic cells obtained from Japanese black bulls. Theriogenology 52, 527–35.CrossRefGoogle Scholar
Simao, M.F., Perez-Camps, M. & Garcia-Ximénez, F. (2007). Short communication. Zebrafish embryo development can be reversibly arrested at the MBT stage by exposure to a water temperature of 16°C. Span. J. Agric. Res. 5, 181–5.CrossRefGoogle Scholar
Wade, P.A. & Kikyo, N. (2002). Chromatin remodeling in nuclear cloning. Eur. J. Biochem. 269, 2284–7.CrossRefGoogle ScholarPubMed
Wakamatsu, Y., Ju, B., Pristyaznhyuk, I., Niwa, K., Ladygina, T., Kinoshita, M., Araki, K. & Ozato, K. (2001). Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka. Proc. Natl. Acad. Sci. USA 98, 1071–6.CrossRefGoogle ScholarPubMed
Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R. & Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–74.CrossRefGoogle ScholarPubMed
Westerfield, M. (2003). The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio). 4th edn, Eugene: University of Oregon Press.Google Scholar
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H.S. (1997). Viable offspring derived from foetal and adult mammalian cells. Nature 385, 801–13.CrossRefGoogle ScholarPubMed
Wolenski, J.S. & Hart, N.H. (1987). Scanning electron microscope studies of sperm incorporation into the zebrafish (Brachydanio) egg. J. Exp. Zool. 243, 259–27.CrossRefGoogle ScholarPubMed