Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T23:17:16.028Z Has data issue: false hasContentIssue false

Assessment of cell-free DNA and apoptosis in an oocyte microenvironment: promising biomarkers to predict intracytoplasmic sperm injection outcomes

Published online by Cambridge University Press:  17 April 2023

Hasnae Debbarh*
Affiliation:
Laboratory of Molecular Genetic Physiopathology and Biotechnology. Department of Biology, Ain Chock Faculty of Sciences, Hassan II University, Casablanca, Morocco
Malak Jamil
Affiliation:
IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco
Hasnae Jelloul
Affiliation:
IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco Labomac IVF Center and Clinical Laboratory Medicine, Casablanca, Morocco
Achraf Zakaria
Affiliation:
IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco Labomac IVF Center and Clinical Laboratory Medicine, Casablanca, Morocco
Noureddine Louanjli
Affiliation:
IVF Center IRIFIV, Iris Clinic, Casablanca, Morocco Labomac IVF Center and Clinical Laboratory Medicine, Casablanca, Morocco Anfa Fertility Center, Private Clinic of In Vitro Fertilization and Endoscopic Surgery, Casablanca, Morocco
Rachida Cadi
Affiliation:
Laboratory of Molecular Genetic Physiopathology and Biotechnology. Department of Biology, Ain Chock Faculty of Sciences, Hassan II University, Casablanca, Morocco
*
Author for correspondence: Debbarh Hasnae. Laboratory of Molecular Genetic Physiopathology and Biotechnology. Department of Biology, Ain Chock Faculty of Sciences, Hassan II University, Casablanca, Morocco. E-mail: debbarhhasnae@gmail.com

Summary

Cell-free DNA (cf-DNA) is defined as DNA fragments that are released into the body fluids from apoptosis or necrosis cells, including follicular fluid (FF), which can affect the microenvironment of the oocyte associated with infertility. We aimed to investigate a relationship between apoptosis of cumulus cells (CCs) and cf-DNA levels in FF and clinical outcomes of women undergoing intracytoplasmic sperm injection (ICSI). Therefore, 82 FF samples were collected, and the corresponding CCs were isolated for ICSI procedures. FF cf-DNA concentration was quantified using ALU-quantitative polymerase chain reaction (PCR), and CCs DNA fragmentation index (DFI) was evaluated by the terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labelling (TUNEL) method. We found that cf-DNA and DFI levels were significantly higher in FF and CCs samples related to the age of women ≥37 years compared with the age of women < 37 years. Moreover, in older and younger women, FF cf-DNA and CCs DFI levels were significantly lower when the anti-Müllerian hormone (AMH) level was > 1.1 ng/ml compared with when AMH ≤ 1.1 ng/ml. In addition, patients with a low number of retrieved oocytes ≤ 6 had significantly higher levels of CCs DFI and FF cf-DNA than women with a higher number of retrieved oocytes > 6. Additionally, we observed that higher levels of cf-DNA and DFI were associated with poor oocyte maturity and poor embryo quality. Finally, cf-DNA and DFI levels were significantly lower in pregnant women than in non-pregnant ones. We conclude that DFI and cf-DNA levels in the oocyte microenvironment could have potential use in evaluating oocyte and embryo developmental competence.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Assou, S., Haouzi, D., Mahmoud, K., Aouacheria, A., Guillemin, Y., Pantesco, V., Rème, T., Dechaud, H., De Vos, J. and Hamamah, S. (2008). A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: A proof of concept study. Molecular Human Reproduction, 14(12), 711719. doi: 10.1093/molehr/gan067 CrossRefGoogle ScholarPubMed
Aucamp, J., Bronkhorst, A. J., Badenhorst, C. P. S. and Pretorius, P. J. (2018). The diverse origins of circulating cell-free DNA in the human body: A critical re-evaluation of the literature. Biological Reviews of the Cambridge Philosophical Society, 93(3), 16491683. doi: 10.1111/brv.12413 CrossRefGoogle ScholarPubMed
Aydiner, F., Yetkin, C. E. and Seli, E. (2010). Perspectives on emerging biomarkers for non-invasive assessment of embryo viability in assisted reproduction. Current Molecular Medicine, 10(2), 206215. doi: 10.2174/156652410790963349 CrossRefGoogle ScholarPubMed
Baka, S. and Malamitsi-Puchner, A. (2006). Novel follicular fluid factors influencing oocyte developmental potential in IVF: A review. Reproductive Biomedicine Online, 12(4), 500506. doi: 10.1016/s1472-6483(10)62005-6 CrossRefGoogle ScholarPubMed
Borowiecka, M., Wojsiat, J., Polac, I., Radwan, M., Radwan, P. and Zbikowska, H. M. (2012). Oxidative stress markers in follicular fluid of women undergoing in vitro fertilization and embryo transfer. Systems Biology in Reproductive Medicine, 58(6), 301305. doi: 10.3109/19396368.2012.701367 CrossRefGoogle ScholarPubMed
Bosco, L., Ruvolo, G., Chiarelli, R., Agnello, M. and Roccheri, M. C. (2015). Selection of the best oocytes for intracytoplasmic sperm injection (ICSI) using apoptotic analysis of cumulus cells. Journal of Biological Researches, 88, 3132.Google Scholar
Bosco, L., Chiarelli, R., Roccheri, M. C., Matranga, D. and Ruvolo, G. (2017). Relationship between apoptosis and survival molecules in human cumulus cells as markers of oocyte competence. Zygote, 25(5), 583591. doi: 10.1017/S0967199417000429 CrossRefGoogle ScholarPubMed
Buyuk, E., Santoro, N., Cohen, H. W., Charron, M. J. and Jindal, S. (2011). Reduced neurotrophin receptor tropomyosin-related kinase A expression in human granulosa cells: A novel marker of diminishing ovarian reserve. Fertility and Sterility, 96(2), 474478.e4. doi: 10.1016/j.fertnstert.2011.05.017 CrossRefGoogle ScholarPubMed
Chaube, S. K., Prasad, P. V., Khillare, B. and Shrivastav, T. G. (2006). Extract of Azadirachta indica (Neem) leaf induces apoptosis in rat oocytes cultured in vitro . Fertility and Sterility, 85(Suppl. 1), 12231231. doi: 10.1016/j.fertnstert.2005.11.034 CrossRefGoogle ScholarPubMed
Chaube, S. K., Shrivastav, T. G., Tiwari, M., Prasad, S., Tripathi, A. and Pandey, A. K. (2014). Neem (Azadirachta indica L.) leaf extract deteriorates oocyte quality by inducing ROS-mediated apoptosis in mammals. SpringerPlus, 3, 464. doi: 10.1186/2193-1801-3-464 CrossRefGoogle ScholarPubMed
Cheng, J., Tang, Q., Cao, X. and Burwinkel, B. (2017). Cell-free circulating DNA integrity based on peripheral blood as a biomarker for diagnosis of cancer: A systematic review. Cancer Epidemiology, Biomarkers and Prevention, 26(11), 15951602. doi: 10.1158/1055-9965.EPI-17-0502 CrossRefGoogle ScholarPubMed
Chiba, H., Mori, E., Morioka, Y., Kashiwakura, M., Nadaoka, T., Saito, H. and Hiroi, M. (1997). Stress of female infertility: Relations to length of treatment. Gynecologic and Obstetric Investigation, 43(3), 171177. doi: 10.1159/000291848 CrossRefGoogle ScholarPubMed
Coticchio, G., Dal Canto, M., Mignini Renzini, M., Guglielmo, M. C., Brambillasca, F., Turchi, D., Novara, P. V. and Fadini, R. (2015). Oocyte maturation: Gamete–somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Human Reproduction Update, 21(4), 427454. doi: 10.1093/humupd/dmv011 CrossRefGoogle ScholarPubMed
Czamanski-Cohen, J., Sarid, O., Cwikel, J., Lunenfeld, E., Douvdevani, A., Levitas, E. and Har-Vardi, I. (2013). Increased plasma cell-free DNA is associated with low pregnancy rates among women undergoing IVF-embryo transfer. Reproductive Biomedicine Online, 26(1), 3641. doi: 10.1016/j.rbmo.2012.09.018 CrossRefGoogle ScholarPubMed
Czamanski-Cohen, J., Sarid, O., Cwikel, J., Levitas, E., Lunenfeld, E., Douvdevani, A. and Har-Vardi, I. (2014). Decrease in cell free DNA levels following participation in stress reduction techniques among women undergoing infertility treatment. Archives of Women’s Mental Health, 17(3), 251253. doi: 10.1007/s00737-013-0407-2.CrossRefGoogle ScholarPubMed
Debbarh, H., Louanjli, N., Aboulmaouahib, S., Jamil, M., Ahbbas, L., Kaarouch, I., Sefrioui, O. and Cadi, R. (2021). Antioxidant activities and lipid peroxidation status in human follicular fluid: Age-dependent change. Zygote, 29(6), 490494. doi: 10.1017/S0967199421000241 CrossRefGoogle ScholarPubMed
Dimopoulou, M., Anifandis, G., Messini, C. I., Dafopoulos, K., Kouris, S., Sotiriou, S., Satra, M., Vamvakopoulos, N. and Messinis, I. E. (2014). Follicular fluid oocyte/cumulus-free DNA concentrations as a potential biomolecular marker of embryo quality and IVF outcome. BioMed Research International, 2014, 289306. doi: 10.1155/2014/289306 CrossRefGoogle ScholarPubMed
Duffy, D. A., Nulsen, J. C., Maier, D. B., Engmann, L., Schmidt, D. and Benadiva, C. A. (2005). Obstetrical complications in gestational carrier pregnancies. Fertility and Sterility, 83(3), 749754. doi: 10.1016/j.fertnstert.2004.08.023 CrossRefGoogle ScholarPubMed
Ebner, T., Shebl, O., Holzer, S., Oppelt, P., Petek, E., Schappacher-Tilp, G. and Mayer, R. B. (2014). Viability of cumulus cells is associated with basal AMH levels in assisted reproduction. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 183, 5963. doi: 10.1016/j.ejogrb.2014.10.015 CrossRefGoogle ScholarPubMed
Emanuelli, I. P., Costa, C. B., Rafagnin Marinho, L. S. R., Seneda, M. M. and Meirelles, F. V. (2019). Cumulus–oocyte interactions and programmed cell death in bovine embryos produced in vitro. Theriogenology, 126, 8187. doi: 10.1016/j.theriogenology.2018.11.028 CrossRefGoogle ScholarPubMed
Eppig, J. J., Ward-Bailey, P. F., Potter, J. E. and Schultz, R. M. (1982). Differential action of sulfated glycosaminoglycans on follicle-stimulating hormone-induced functions of cumuli oophori isolated from mice. Biology of Reproduction, 27(2), 399406. doi: 10.1095/biolreprod27.2.399 CrossRefGoogle ScholarPubMed
Ferrero, H., Delgado-Rosas, F., Garcia-Pascual, C. M., Monterde, M., Zimmermann, R. C., Simón, C., Pellicer, A. and Gómez, R. (2012). Efficiency and purity provided by the existing methods for the isolation of luteinized granulosa cells: A comparative study. Human Reproduction, 27(6), 17811789. doi: 10.1093/humrep/des096 CrossRefGoogle ScholarPubMed
Fujino, Y., Ozaki, K., Yamamasu, S., Ito, F., Matsuoka, I., Hayashi, E., Nakamura, H., Ogita, S., Sato, E. and Inoue, M. (1996). DNA fragmentation of oocytes in aged mice. Human Reproduction, 11(7), 14801483. doi: 10.1093/oxfordjournals.humrep.a019421 CrossRefGoogle ScholarPubMed
Gnoth, C., Schuring, A. N., Friol, K., Tigges, J., Mallmann, P. and Godehardt, E. (2008). Relevance of anti-Mullerian hormone measurement in a routine IVF program. Human Reproduction, 23(6), 13591365. doi: 10.1093/humrep/den108 CrossRefGoogle Scholar
Hull, K. L. and Harvey, S. (2014). Growth hormone and reproduction: A review of endocrine and autocrine/paracrine interactions. International Journal of Endocrinology, 2014, 234014. doi: 10.1155/2014/234014 CrossRefGoogle ScholarPubMed
Jayaprakasan, K., Campbell, B., Hopkisson, J., Johnson, I. and Raine-Fenning, N. (2010). A prospective, comparative analysis of anti-Müllerian hormone, inhibin-B, and three-dimensional ultrasound determinants of ovarian reserve in the prediction of poor response to controlled ovarian stimulation. Fertility and Sterility, 93(3), 855864. doi: 10.1016/j.fertnstert.2008.10.042 CrossRefGoogle ScholarPubMed
Jylhävä, J., Nevalainen, T., Marttila, S., Jylhä, M., Hervonen, A. and Hurme, M. (2013). Characterization of the role of distinct plasma cell-free DNA species in age-associated inflammation and frailty. Aging Cell, 12(3), 388397. doi: 10.1111/acel.12058 CrossRefGoogle ScholarPubMed
Kalmbach, K. H., Fontes Antunes, D. M. F., Dracxler, R. C., Knier, T. W., Seth-Smith, M. L., Wang, F., Liu, L. and Keefe, D. L. (2013). Telomeres and human reproduction. Fertility and Sterility, 99(1), 2329. doi: 10.1016/j.fertnstert.2012.11.039 CrossRefGoogle ScholarPubMed
Krisher, R. L. (2004). The effect of oocyte quality on development. Journal of Animal Science, 82(E Suppl), E14E23. doi: 10.2527/2004.8213_supplE14x Google ScholarPubMed
Lee, K. S., Joo, B. S., Na, Y. J., Yoon, M. S., Choi, O. H. and Kim, W. W. (2001). Cumulus cells apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ET. Journal of Assisted Reproduction and Genetics, 18(9), 490498. doi: 10.1023/a:1016649026353 CrossRefGoogle ScholarPubMed
Liu, Y., Shen, Q., Zhao, X., Zou, M., Shao, S., Li, J., Ren, X. and Zhang, L. (2019). Cell-free mitochondrial DNA in human follicular fluid: A promising bio-marker of blastocyst developmental potential in women undergoing assisted reproductive technology. Reproductive Biology and Endocrinology: RB&E, 17(1), 54. doi: 10.1186/s12958-019-0495-6 CrossRefGoogle ScholarPubMed
Lynch, C. D., Sundaram, R., Maisog, J. M., Sweeney, A. M. and Buck Louis, G. M. (2014). Preconception stress increases the risk of infertility: Results from a couple-based prospective cohort study—The LIFE study. Human Reproduction, 29(5), 10671075. doi: 10.1093/humrep/deu032 CrossRefGoogle ScholarPubMed
Monniaux, D. (2016). Driving folliculogenesis by the oocyte–somatic cell dialog: Lessons from genetic models. Theriogenology, 86(1), 4153. doi: 10.1016/j.theriogenology.2016.04.017 CrossRefGoogle ScholarPubMed
Nakahara, K., Saito, H., Saito, T., Ito, M., Ohta, N., Takahashi, T. and Hiroi, M. (1997). The incidence of apoptotic bodies in membrana granulosa can predict prognosis of ova from patients participating in in vitro fertilization programs. Fertility and Sterility, 68(2), 312317. doi: 10.1016/s0015-0282(97)81521-x CrossRefGoogle ScholarPubMed
Pisetsky, D. S. and Fairhurst, A. M. (2007). The origin of extracellular DNA during the clearance of dead and dying cells. Autoimmunity, 40(4), 281284. doi: 10.1080/08916930701358826 CrossRefGoogle ScholarPubMed
Ruvolo, G., Bosco, L., Pane, A., Morici, G., Cittadini, E. and Roccheri, M. C. (2007). Lower apoptosis rate in human cumulus cells after administration of recombinant luteinizing hormone to women undergoing ovarian stimulation for in vitro fertilization procedures. Fertility and Sterility, 87(3), 542546. doi: 10.1016/j.fertnstert.2006.06.059 CrossRefGoogle ScholarPubMed
Saito, H., Seino, T., Kaneko, T., Nakahara, K., Toya, M. and Kurachi, H. (2002). Endometriosis and oocyte quality. Gynecologic and Obstetric Investigation, 53(Suppl. 1), 4651. doi: 10.1159/000049424 CrossRefGoogle ScholarPubMed
Salehi, E., Aflatoonian, R., Moeini, A., Yamini, N., Asadi, E., Khosravizadeh, Z., Tarzjani, M. D., Harat, Z. N. and Abolhassani, F. (2017). Apoptotic biomarkers in cumulus cells in relation to embryo quality in polycystic ovary syndrome. Archives of Gynecology and Obstetrics, 296(6), 12191227. doi: 10.1007/s00404-017-4523-5 CrossRefGoogle ScholarPubMed
Scalici, E., Traver, S., Molinari, N., Mullet, T., Monforte, M., Vintejoux, E. and Hamamah, S. (2014). Cell-free DNA in human follicular fluid as a biomarker of embryo quality. Human Reproduction, 29(12), 26612669. doi: 10.1093/humrep/deu238 CrossRefGoogle ScholarPubMed
Schwarzenbach, H., Müller, V., Milde-Langosch, K., Steinbach, B. and Pantel, K. (2011). Evaluation of cell-free tumour DNA and RNA in patients with breast cancer and benign breast disease. Molecular Biosystems, 7(10), 28482854. doi: 10.1039/c1mb05197k CrossRefGoogle ScholarPubMed
Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. and Shendure, J. (2016). Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell, 164(1–2), 5768. doi: 10.1016/j.cell.2015.11.050 CrossRefGoogle Scholar
Spikings, E. C., Alderson, J. and St John, J. C. S. (2006). Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer. Human Reproduction Update, 12(4), 401415. doi: 10.1093/humupd/dml011 CrossRefGoogle ScholarPubMed
St John, J. C. S., Facucho-Oliveira, J., Jiang, Y., Kelly, R. and Salah, R. (2010). Mitochondrial DNA transmission, replication and inheritance: A journey from the gamete through the embryo and into offspring and embryonic stem cells. Human Reproduction Update, 16(5), 488509. doi: 10.1093/humupd/dmq002 CrossRefGoogle ScholarPubMed
Tesarik, J., Galán-Lázaro, M. and Mendoza-Tesarik, R. (2021). Ovarian aging: Molecular mechanisms and medical management. International Journal of Molecular Sciences, 22(3), 1371. doi: 10.3390/ijms22031371 CrossRefGoogle ScholarPubMed
Tilly, J. L. (1997). Apoptosis and the ovary: A fashionable trend or food for thought? Fertility and Sterility, 67(2), 226228. doi: 10.1016/S0015-0282(97)81901-2 CrossRefGoogle ScholarPubMed
Traver, S., Assou, S., Scalici, E., Haouzi, D., Al-Edani, T., Belloc, S. and Hamamah, S. (2014). Cell-free nucleic acids as non-invasive biomarkers of gynecological cancers, ovarian, endometrial and obstetric disorders and fetal aneuploidy. Human Reproduction Update, 20(6), 905923. doi: 10.1093/humupd/dmu031 CrossRefGoogle ScholarPubMed
Traver, S., Scalici, E., Mullet, T., Molinari, N., Vincens, C., Anahory, T. and Hamamah, S. (2015). Cell-free DNA in human follicular microenvironment: New prognostic biomarker to predict in vitro fertilization outcomes. PLOS ONE, 10(8), e0136172. doi: 10.1371/journal.pone.0136172 CrossRefGoogle ScholarPubMed
Tripathi, A., Shrivastav, T. G. and Chaube, S. K. (2013). An increase of granulosa cell apoptosis mediates aqueous neem (Azadirachta indica) leaf extract-induced oocyte apoptosis in rat. International Journal of Applied and Basic Medical Research, 3(1), 2736. doi: 10.4103/2229-516X.112238 Google ScholarPubMed
Umetani, N., Kim, J., Hiramatsu, S., Reber, H. A., Hines, O. J., Bilchik, A. J. and Hoon, D. S. (2006). Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: Direct quantitative PCR for ALU repeats. Clinical Chemistry, 52(6), 10621069. doi: 10.1373/clinchem.2006.068577 CrossRefGoogle ScholarPubMed
Van Blerkom, J., Davis, P. W. and Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Human Reproduction, 10(2), 415424. doi: 10.1093/oxfordjournals.humrep.a135954 CrossRefGoogle ScholarPubMed
Van Soom, A., Tanghe, S., De Pauw, I., Maes, D. and De Kruif, A. (2002). Function of the cumulus oophorus before and during mammalian fertilization. Reproduction in Domestic Animals, 37(3), 144151. doi: 10.1046/j.1439-0531.2002.00345.x CrossRefGoogle ScholarPubMed
Varras, M., Polonifi, K., Mantzourani, M., Stefanidis, K., Papadopoulos, Z., Akrivis, C. and Antsaklis, A. (2012). Expression of antiapoptosis gene survivin in luteinized ovarian granulosa cells of women undergoing IVF or ICSI and embryo transfer: Clinical correlations. Reproductive Biology and Endocrinology: RB&E, 10(1), 74. doi: 10.1186/1477-7827-10-74 CrossRefGoogle ScholarPubMed
Ventura-Clapier, R., Moulin, M., Piquereau, J., Lemaire, C., Mericskay, M., Veksler, V. and Garnier, A. (2017). Mitochondria: A central target for sex differences in pathologies. Clinical Science, 131(9), 803822. doi: 10.1042/CS20160485 CrossRefGoogle ScholarPubMed
Wang, L., Tang, J., Wang, L., Tan, F., Song, H., Zhou, J. and Li, F. (2021). Oxidative stress in oocyte aging and female reproduction. Journal of Cellular Physiology, 236(12), 79667983. doi: 10.1002/jcp.30468 CrossRefGoogle ScholarPubMed
Wellinger, R. J. (2014). In the end, what’s the problem? Molecular Cell, 53(6), 855856. doi: 10.1016/j.molcel.2014.03.008 CrossRefGoogle ScholarPubMed