Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:01:14.633Z Has data issue: false hasContentIssue false

Use of chemically defined system for the direct comparison of inner cell mass and trophectoderm distribution in murine, porcine and bovine embryos

Published online by Cambridge University Press:  26 September 2008

Rabindranath de la Fuente
Affiliation:
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
W. Allan King*
Affiliation:
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
*
W.A. King, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G2W1. Fax: +1 (519) 767-1450. e-mail: waking@uoguelph.ca.

Summary

The mammalian blastocyst comprises an inner cell mass (ICM) and a trophectoderm cell layer. In this study the allocation of blastomeres to either cell lineage was compared between murine, porcine and bovine blastocysts. Chemical permeation of trophectoderm cells by the Ca2+ ionophore A23187 in combination with DNA-specific fluorochromes resulted in the differential staining of trophectoderm and ICM. Confocal microscopy confirmed the exclusive permeation of trophectoderm and the internal localisation of intact ICM cells in bovine blastocysts. Overall, differential cell counts were obtained in approximately 85% of the embryos assessed. Mean (±SEM) total cell numbers were 72.2 ± 3.1 and 93.1±5 for in vivo derived murine (n = 41) and porcine (n = 21) expanded blastocysts, respectively. Corresponding ICM cell number counts revealed ICM/total cell number ratios of 0.27 and 0.21, respectively. Comparison of in vivo (n = 20) and in vitro derived bovine embryos on day 8 (n = 29) or day 9 (n = 29) revealed a total cell number of 195.25±9.9, 166.14±9.9 and 105±6.7 at the expanded blastocyst stage with corresponding ICM/total cell ratios of 0.27, 0.23 and 0.23, respectively. While total cell numbers differed significantly among the three groups of bovine embryos (p<0.05), the ICM/total cell ratio did not. These results indicate that a similar proportion of cells is allocated to the ICM among blastocysts of genetically divergent species.

Type
Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowman, P., & McLaren, A.. (1970). Cleavage rate of mouse embryos in vivo and in vitro. J. Embryol. Exp. Morphol. 24, 203–7.Google ScholarPubMed
Brulet, P., & Jacob, F.. (1982). Molecular cloning of a cDNA sequence encoding a trophectoderm-specific marker during mouse blastocyst formation. Proc. Nail. Acad. Sci. USA 79, 2328–32.CrossRefGoogle ScholarPubMed
Brulet, P., Babinet, C., Kemler, R., & Jacob, F.. (1980). Monoclonal antibodies against trophectoderm-specific markers during mouse blastocyst formation. Proc. Natl. Acad. Sci. USA 77, 4113–17.CrossRefGoogle ScholarPubMed
Brulet, P., Condamine, H., & Jacob, F.. (1985). Spatial distribution of transcripts of the long repeated ETn sequence during early mouse embryogenesis. Proc. Natl. Acad. Sci. USA 82, 2054–8.CrossRefGoogle Scholar
Carney, E.W., Prideaux, V., Lye, S.J., & Rossant, J.. (1993). Progressive expression of trophoblast-specific genes during formation of mouse trophoblast giant cells in vitro. Mol. Reprod. Dev. 34, 357–68.CrossRefGoogle ScholarPubMed
Cassar, G., De la Fuente, R., Yu, Z., King, G.J., & King, W.A.. (1995). Sex chromosome complement and developmental diversity in pre- and post-hatching pig embryos. Theriogenology 44, 879–84.CrossRefGoogle Scholar
Cereijido, M., González, Mariscal L, Contreras, R.G., Gallardo, J.M., García-Villegas, R., & Valdés, J.. (1993). The making of a tight junction. J. Cell Sci. Suppl. 17, 127–32.CrossRefGoogle ScholarPubMed
Cross, J.C., Werb, Z., & Fisher, S.J.. (1994). Implantation and the placenta: key pieces of the development puzzle. Science 266, 1508–18.CrossRefGoogle ScholarPubMed
De Loof, A.. (1992). All animals develop from a blastula: consequences of an undervalued definition for thinking on development. BioEssays 14, 573–5.CrossRefGoogle ScholarPubMed
Ducibella, T., Albertini, D.F., Anderson, E., & Biggers, J.D.. (1975). The preimplantation mammalian embryo: characterization of intercellular junctions and their appearance during development. Dev. Biol. 45, 231–50.CrossRefGoogle ScholarPubMed
Farin, P.W., & Farin, C.E.. (1995). Transfer of bovine embryos produced in vivo or in vitro: survival and fetal development. Biol. Reprod. 52, 676–82.CrossRefGoogle ScholarPubMed
Fléchon, J.E., Guillomot, M., Charlier, M., Fléchon, B., & Martal, J.. (1986). Experimental studies on the elongation of the ewe blastocyst. Reprod. Nutr. Dev. 26, 1017–24.CrossRefGoogle ScholarPubMed
Fleming, T.P., Javed, Q., Collins, J., & Hay, M.. (1993). Biogenesis of structural intercellular junctions during cleavage in the mouse embryo. J. Cell Sci. Suppl. 17, 119–25.CrossRefGoogle ScholarPubMed
Gardner, R.L., Papaioannou, V.E., & Barton, S.C.. (1973). Origin of the ectoplacental cone and secondary giant cells in mouse blastocysts reconstituted from isolated trophoblast and inner cell mass. J. Embryol. Exp. Morphol. 30, 561–72.Google ScholarPubMed
Geisert, R.D., Brookbank, J.W., Roberts, R.M., & Bazer, F.W.. (1982). Establishment of pregnancy in the pig. II. Cellular remodeling of the porcine blastocyst during elongation on day 12 of pregnancy. Biol. Reprod. 27, 941–55.CrossRefGoogle ScholarPubMed
Gueth-Hallonet, C., & Maro, B.. (1992). Cell polarity and cell diversification during early mouse embryogenesis. Trends Genet. 8, 272–9.CrossRefGoogle ScholarPubMed
Handyside, A.H., & Hunter, S.. (1984). A rapid procedure for visualising the inner cell mass and trophectoderm nuclei of mouse blastocysts in situ using polynucleotide-specific fluorochromes. J. Exp. Zool. 231, 429–34.CrossRefGoogle ScholarPubMed
Handyside, A.H., & Hunter, S.. (1986). Cell division and death in the mouse blastocyst before implantation. Rouxs Arch. Dev. Biol. 195, 519–26.CrossRefGoogle ScholarPubMed
Hardy, K., Handyside, A.H., & Winston, R.M.. (1989). The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development 107, 597604.CrossRefGoogle ScholarPubMed
Hewitson, L., & Leese, H.J.. (1993). Energy metabolism of the trophectoderm and inner cell mass of the mouse blastocyst. J. Exp. Zool. 267, 337–43.CrossRefGoogle ScholarPubMed
Iwasaki, S., Yoshiba, N., Ushijima, H., Watanabe, S., & Nakahara, T.. (1990). Morphology and proportion of inner cell mass of bovine blastocysts fertilized in vitro and in vivo. J. Reprod. Fertil. 90, 279–84.CrossRefGoogle ScholarPubMed
Iwasaki, S., Mizuno, J., Kobayashi, K., Yoshikane, Y., Hayashi, T.. (1994). Changes in morphology and cell number of inner cell mass of porcine blastocysts during freezing. Theriogenology 42, 841–8.CrossRefGoogle ScholarPubMed
Johnson, M.H., & Maro, B.. (1986). Time and space in the mouse early embryo: a cell biological approach to cell diversification. In Experimental Approaches to Mammalian Embryonic Development, ed. Rossant, J. & Pedersen, R.A., pp. 3566. Cambridge: Cambridge University Press.Google Scholar
Klemke, R.L., & Weitlauf, H.M.. (1993). Comparison of the ontogeny of specific cell surface determinants on normal and delayed implanting mouse embryos. J. Reprod. Fertil. 99, 167–72.CrossRefGoogle ScholarPubMed
Magnuson, T., Jacobson, J.B., & Stackpole, C.W.. (1978). Relationship between intercellular permeability and junction organization in the preimplantation mouse embryo. Dev. Biol. 67, 214–24.CrossRefGoogle ScholarPubMed
Martinez-Palomo, A., Meza, I., Beaty, G., & Cereijido, M.. (1980). Experimental modulation of occluding junctions in a cultured transporting epithelium. J. Cell Biol. 87, 736–45.CrossRefGoogle Scholar
McKiernan, S.H., & Bavister, B.D.. (1994). Timing of development is a critical parameter for predicting successful embryogenesis. Hum. Reprod. 9, 2123–9.CrossRefGoogle ScholarPubMed
McLaren, A., & Smith, R.. (1977). Functional test of tight junctions in the mouse blastocyst. Nature 267, 351–3.CrossRefGoogle ScholarPubMed
Mohr, L.R., & Trounson, A.O.. (1982). Comparative ultrastructure of hatched human, mouse and bovine blastocysts. J. Reprod. Fertil. 66, 499504.CrossRefGoogle ScholarPubMed
Papaioannou, V.E., & Ebert, K.M.. (1988). The preimplantation pig embryo: cell number and allocation to trophectoderm and inner cell mass of the blastocyst in vivo and in vitro. Development 102, 793803.CrossRefGoogle ScholarPubMed
Pedersen, R.A.. (1986). Potency, lineage and allocation in preimplantation mouse embryos. In Experimental Approaches to Mammalian Embryonic Development, ed. Rossant, J. & Pedersen, R.A., pp. 333. Cambridge: Cambridge University Press.Google Scholar
Pedersen, R.A., & Burdsal, C.A.. (1994). Mammalian embryogenesis, In The Physiology of Reproduction, ed. Knobil, E. & Neill, J.O., pp. 319–90. New York: Raven Press.Google Scholar
Pressman, B.C.. (1976). Biological applications of ionophores. Annu. Rev. Biochem. 45, 501–30.CrossRefGoogle ScholarPubMed
Roberts, J.M., Taylor, C.T., Melling, G.C., Kingsland, C.R., & Johnson, P.M.. (1992). Expression of the CD46 antigen, and absence of class I MHC antigen, on the human oocyte and preimplantation blastocyst. Immunology 75, 202–5.Google ScholarPubMed
Rossant, J.. (1986). Development of extraembryonic cell lineages in the mouse embryo. In Experimental Approaches to Mammalian Embryonic Development, ed. Rossant, J. & Pedersen, R.A., pp. 97120. Cambridge: Cambridge University Press.Google Scholar
Schane, F.A., Kane, A.B., Young, E.E., & Farber, J.L.. (1979). Calcium dependence of toxic cell death: a final common pathway. Science 206, 700–2.CrossRefGoogle Scholar
Sionov, R.V., Simcha, Y., Har-Nir, R. & Gallily, R.. (1993). Trophoblasts protect the inner cell mass from macrophage destruction. Biol. Reprod. 49, 588–95.CrossRefGoogle ScholarPubMed
Solter, D., & Knowles, B.B.. (1975). Immunosurgery of mouse blastocyst. Proc. Natl. Acad. Sci. USA 72, 5099–102.CrossRefGoogle ScholarPubMed
Solter, D., & Knowles, B.B.. (1978). Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA 75, 5565–9.CrossRefGoogle ScholarPubMed
Surani, M.A.H., Torchiana, D., & Barton, S.C.. (1978). Isolation and development of the inner cell mass after exposure of mouse embryos to calcium ionophore A23187. J. Embryol. Exp. Morphol. 45, 237–47.Google Scholar
Thithapandha, A.. (1980). Characteristics of drugs that penetrate the preimplantation blastocyst. Biochem. Pharmacol. 29, 1663–8.CrossRefGoogle ScholarPubMed
Trump, B.F., & Berezesky, I.K.. (1995). Calcium-mediated cell injury and cell death. FASEB J.. 9, 219–28.CrossRefGoogle ScholarPubMed
Van Soom, A., Ysebaert, M.T., & de Kruif, A.. (1997). Relationship between timing of development, morula morphology and cell allocation to inner cell mass and trophectoderm in in-vitro produced bovine embryos. Mol. Reprod. Dev. 47, 4756.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Wimsatt, W.A.. (1975). Some comparative aspects of implantation. Biol. Reprod. 12, 140.CrossRefGoogle ScholarPubMed
Xu, K.P., Yadav, B.R., King, W.A., & Betteridge, K.J.. (1992). Sex related differences in developmental rates of bovine embryos produced and cultured in vitro. Mol. Reprod. Dev.31, 249–52.CrossRefGoogle ScholarPubMed