Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T17:47:56.214Z Has data issue: false hasContentIssue false

Peroxisome proliferator-activated receptor gamma (PPARγ), a key regulatory gene of lipid metabolism in chicken

Published online by Cambridge University Press:  11 October 2016

M. ROYAN*
Affiliation:
Department of Animal Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), North Branch, Rasht, Iran
B. NAVIDSHAD
Affiliation:
Department of Animal Science, University of Mohaghegh Ardabili, Ardabil, Iran
*
Corresponding author: bnavidshad@uma.ac.ir
Get access

Abstract

The relationships between metabolic pathways, nutrients and genes are the basis of the majority of current studies on poultry. The rapid advance of biochemical and molecular tools has now made it possible to understand the molecular base of important phenotypic characteristics. Fats are the main storage source of energy in animal body with important role in cell membrane structure, gene regulation and precursors of important regulatory metabolites. From a functional point of view, it has been suggested that dietary fats change liver fatty acid synthesis and other lipogenic enzymes by regulating mRNA synthesis. Nuclear hormone receptors are defined as ligand-activated transcription factors which directly and indirectly regulate a number of genes involved in lipid metabolism and inflammatory signalling. The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of transcription factors. PPARs are involved in cellular differentiation, insulin sensitisation, cancer, atherosclerosis and several metabolic diseases. Three distinct PPAR genes have been recognised as α, δ and γ. The most important metabolic effect of PPARγ is its role in adipogenesis. PPARγ is a central gene regulator in adipose tissue and stimulate the expression of several genes involved in adipogenesis. Based upon examples taken from chicken lipid metabolism, it is possible to draw lessons from the study of PPARγ functions in order to approach the study of gene expression PPARγ functions regulatory pathways interactions.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ALLRED, C.D., TALBERT, D.R., SOUTHARD, R.C., WANG, X. and KILGORE, M.W. (2008) PPARγ1 as a molecular target of eicosapentaenoic acid in human colon cancer (HT-29) cells. Journal of Nutrition 138: 250-256.Google Scholar
ATANASOV, A.G., BLUNDER, M., FAKHRUDIN, N., LIU, X., NOHA, S.M., MALAINER, C., KRAMER, M.P., COCIC, A., KUNERT, O., SCHINKOVITZ, A., HEISS, E.H., SCHUSTER, D., DIRSCH, V.M. and BAUER, R. (2013) Polyacetylenes from Notopterygium incisum-New Selective Partial Agonists of Peroxisome Proliferator- Activated Receptor-Gamma. PLoS ONE 8: e61755.Google Scholar
AUBOEUF, D., RIEUSSET, J. and FAJAS, L. (1997) Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-α in humans. No alteration in adipose tissue of obese and NIDDM patients. Diabetes 46: 1319-1327.Google Scholar
BAI, P.S., HOUTEN, M., HUBER, A., SCHREIBER, V., WATANABE, M., KISS, B., DE MURCIA, G., AUWERX, J. and MENISSIER-DE MURCIA, J. (2007) Peroxisome proliferator-activated receptor (PPAR) γ2 controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/PPAR gamma heterodimer. The Journal of Biological Chemistry 282: 37738-37746.Google Scholar
BARDOT, O., ALDRIDGE, T.C., LATRUFFE, N. and GREEN, S. (1993) PPAR-RXR heterodimer activates a peroxisome proliferator response element upstream of the bifunctional enzyme gene. Biochemical and Biophysical Research Communications 192: 37-45.Google Scholar
BELURY, M.A., MOYA-CAMAREN, S.Y., LU, M., SHI, L., LEESNITZER, L.M. and BLANCHARD, S.G. (2002) Conjugated linoleic acid is an activator and ligand for peroxisome proliferator-activated receptor-gamma (PPARγ). Nutrition Research 22: 817-824.Google Scholar
CAMP, H.S., CHAUDHRY, A. and LEFF, T. (2001) A novel potent antagonist of peroxisome proliferator-activated receptor γ blocks adipocyte differentiation but does not revert the phenotype of terminally differentiated adipocytes. Endocrinology 142: 3207-3213.Google Scholar
CAPOBIANCO, E., WHITE, V., HIGA, R., MARTINEZ, N. and JAWERBAUM, A. (2008) Effects of natural ligands of PPARγ on lipid metabolism in placental tissues from healthy and diabetic rats. Molecular Human Reproduction 14: 491-499.Google Scholar
CHAN, L.S.A. and WELLS, R.A. (2009) Cross-Talk between PPARs and the Partners of RXR: A Molecular Perspective. PPAR Research Article ID 925309, 9 pages, http://dx.doi.org/10.1155/2009/925309.CrossRefGoogle Scholar
CHEON, C.W., KIM, D.H., KIM, D.H., CHO, Y.H. and KIM, J.H. (2009) Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World Journal of Gastroenterology 15: 310-320.CrossRefGoogle ScholarPubMed
CHEVILLOTTE, E., RIEUSSET, J., ROQUES, M., DESAGE, M. and VIDAL, H. (2001) The regulation of uncoupling protein-2 gene expression by w-6 polyunsaturated fatty acids in human skeletal muscle cells involves multiple pathways, including the nuclear receptor peroxisome proliferator-activated receptor. Journal of Biological Chemistry 276: 10853-10860.Google Scholar
CHAWALA, A., SSHWARZ, E.J., DIMACULANGAN, D.D. and LAZAR, M.A. (1994) Peroxisome proliferator activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135: 798-800.Google Scholar
CHAWLA, A., REPA, J.J., EVANS, R.M. and MANGELSDORF, D.J. (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294: 1866-1870.Google Scholar
CLARKE, B.A. and CLARKE, S.D. (1982) Suppression of rat liver fatty acid synthesis by eicosa-5,8,ll,14-tetraynoic acid without a reduction in lipogenic enzymes. Journal of Nutrition 112: 1212-1219.Google Scholar
CLARKE, S.D., ARMSTRONG, M.K. and JUMP, D.B. (1990) Nutritional control of rat liver fatty acid synthase and S14 mRNA abundance. Journal of Nutrition 120: 218-224.Google Scholar
CLARKE, S.D. and JUMP, D.B. (1993) Fatty acid regulation of gene expression: a unique role for polyunsaturated fats, in: BERDANIER, C. & HARGROVE, J.L. (Eds)‘Nutrition and Gene Expression’, pp. 227-246 (CRC Press, Boca Raton, Florida).Google Scholar
DAI, Y. and WEI, H.W. (2010) Peroxisome proliferator-activated receptor γ and colorectal cancer. World Journal of Gastrointestinal Oncology 2: 159-164.Google Scholar
DING, S.T., LI, Y.C., NESTOR, K.E., VELLEMAN, S.G. and MERSMANN, H.J. (2003) Expression of Turkey Transcription Factors and Acyl-Coenzyme Oxidase in Different Tissues and Genetic Populations. Poultry Science 82: 17-24.Google Scholar
DING, N., GAO, Y., WANG, N. and LI, H. (2011) Functional analysis of the chicken PPARgamma gene 5’-flanking region and C/EBPalpha-mediated gene regulation. Comparative Biochemistry and Physiology Part B 158: 297-303.Google Scholar
DIRENZO, J., SODERSTROM, M., KUROKAWA, R., OGLIASTRO, M.H., RICOTE, M., INGREY, S., HORLEIN, A., ROSENFELD, M.G. and GLASS, C.K. (1997) Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors. Molecular and Cellular Biology 17: 2166-2176.Google Scholar
DUAN, K., SUN, Y., ZHANG, X., ZHANG, T., ZHANG, W., ZHANG, J., WANG, G., WANG, S., LENG, L., LI, H. and WANG, N. (2015) Identification and characterisation of transcript variants of chicken peroxisome proliferator-activated receptor gamma. Poultry Science 94: 2516-2527.Google Scholar
FAJAS, L., AUBOEUF, D. and RASPE, E. (1997) The organisation, promoter analysis, and expression of the human PPAR gene. Journal of Biological Chemistry 272: 18779-18789.Google Scholar
FORMAN, B.M., TONTONOZ, P., CHEN, J., BRUN, R.P., SPIEGELMAN, B.M. and EVANS, R.M. (1995) 15-deoxy-Δ12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83: 803-812.Google Scholar
GLASS, C.K. (1994) Differential recognition of target genes by nuclear receptor monomers, dimers and heterodimers. Endocrine Reviews 15: 1503-1519.Google ScholarPubMed
HAN, J.Y., KWON, Y.S., YANG, D.C., JUNG, Y.R. and CHOI, Y.E. (2006) Expression and RNA interference-induced silencing of the dammar-enediol synthase gene in Panax ginseng Plant. Cell Physiology 47: 1653-1662.Google Scholar
HAN, C., WEI, S., HE, F., LIU, D., WAN, H., LIU, H., LI, L., XU, H., DU, X. and XU, F. (2015) The Regulation of Lipid Deposition by Insulin in Goose Liver Cells Is Mediated by the PI3K-AKT-mTOR Signaling Pathway. PLoS ONE 10: e0098759. doi:10.1371/journal.pone.0098759.Google Scholar
HINDLE, A.K., KOURY, J., McCAFFREY, T., FU, S.W. and BRODY, F. (2009) Dysregulation of gene expression within the peroxisome proliferator activated receptor pathway in morbidly obese patients. Surgical Endoscopy 23: 1292-1297.CrossRefGoogle ScholarPubMed
HOJO, M., TAKADA, I., KIMURA, W., FUKUDA, K. and YASUGI, S. (2006) Expression patterns of the chicken peroxisome proliferator-activated receptors (PPARs) during the development of the digestive organs. Gene Expression Patterns 6: 171-179.Google Scholar
HOOD, R.L. (1982) The cellular basis for growth of the abdominal fat pad in broiler-type chickens. Poultry Science 61: 117-121.Google Scholar
HUIN, C., CORRIVEAU, L., BIANCHI, A., KELLER, J.M., COLLET, P., KREMARIK-BOUILLAUD, P., DOMENJOUD, L., BECUWE, P., SCHOHN, H., MENARD, D. and DAUCA, M. (2000) Differential expression of peroxisome proliferator-activated receptors (PPARs) in the developing human fetal digestive tract. Journal of Histochemistry and Cytochemistry 48: 603-611.Google Scholar
ISA, Y., MIYAKAWA, Y., YANAGISAWA, M., GOTO, T., KANG, M.S., KAWADA, T., MORIMITSU, Y., KUBOTA, K. and TSUDA, T. (2008) 6-Shogaol and 6-gingerol, the pungent of ginger, inhibit TNF-α mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications 373: 429-434.Google Scholar
KERSTEN, S., DESVERGNE, B. and WAHLI, W. (2000) Roles of PPARs in health and disease. Nature 405: 421-424.Google Scholar
KHALAJI, S., ZAGHARI, M., GANJKHANLOO, M. and GHAZIANI, F. (2013) Arginine, soy isoflavone and hydroxypropylmethylcellulose have protective effects against obesity in broiler breeder hens fed on high-energy diets. British Poultry Science 54: 766-779.CrossRefGoogle ScholarPubMed
KIM, S.W., HER, S.J., KIM, S.Y. and SHIN, C.S. (2005) Ectopic overexpression of adipogenic transcription factors induces transdifferentiation of MC3T3-E1 osteoblasts. Biochemical and Biophysical Research Communications 327: 811-819.Google Scholar
KNOWLES, R.G. and MONCADA, S. (1994) "Nitric oxide synthases in mammals" . Biochemical Journal 298: 249-258.Google Scholar
KOTA, B.P., HUANG, T.H. and ROUFOGALIS, B.D. (2005) An overview on biological mechanisms of PPARs. Pharmacological Research 51: 85-94.Google Scholar
KUROYANAGI, K., KANG, M.S., GOTO, T., HIRAI, S., OHYAMA, K., KUSUDO, T., YU, R., YANO, M., SASAKI, T., TAKAHASHI, N. and KAWADA, T. (2008) Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications 366: 219-225.Google Scholar
LU, T., HARPER, A.F., ZHAO, J., CORL, B.A., LEROITH, T. and DALLOUL, R.A. (2014) Effects of a dietary antioxidant blend and vitamin E on fatty acid profile, liver function, and inflammatory response in broiler chickens fed a diet high in oxidants. Poultry Science 93: 1658-1666 CrossRefGoogle ScholarPubMed
LARKINA, T.A., SAZANOVA, A.L., FOMICHEV, K.A., BARKOVA, O.Y., MALEWSKI, T., JASZCZAK, K. and SAZANOV, A.A. (2011) HMG1A and PPARG are differently expressed in the liver of fat and lean broilers. Journal of Applied Genetics 52: 225-228.Google Scholar
LECKA-CZERNIK, B. (2010) Bone loss in diabetes: use of antidiabetic thiazolidinediones and secondary osteoporosis. Current Osteoporosis Reports 8: 178-84.Google Scholar
LEE, B.K., KIM, J.S., AHN, H.J., HWANG, J.H., KIM, J.M., LEE, H.T., AN, B.K. and KANG, C.W. (2010) Changes in hepatic lipid parameters and hepatic messenger ribonucleic acid expression following estradiol administration in laying hens (Gallus domesticus). Poultry Science 89: 2660-2667.Google Scholar
LEE, J. and GE, K. (2014) Transcriptional and epigenetic regulation of PPARγ expression during adipogenesis . Cell & Bioscience 4: 29.Google Scholar
LEESNITZER, L.M., PARKS, D.J., BLEDSOE, R.K., COBB, J.E., COLLINS, J.L., CONSLER, T.G., DAVIS, R.G., HULL-RYDE, E.A., LENHARD, J.M., PATEL, L., PLUNKET, K.D., SHENK, J.L., STIMMEL, J.B., THERAPONTOS, C., WILLSON, T.M. and BLANCHARD, S.G. (2002) Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41: 6640-6650.Google Scholar
LIU, S., WANG, Y.X., WANG, L., LI, Y.M. and LI, H. (2010) Transdifferentiation of fibroblasts into adipocyte-like cells by chicken adipogenic transcription factors. Comparative Biochemistry and Physiology - Part A 156: 502-508.Google Scholar
LIU, S., WANG, L., WANG, N., WANG, Y., SHI, H. and LI, H. (2009) Oleate induces transdifferentiation of chicken fibroblasts into adipocyte-like cells. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 154: 135-141.CrossRefGoogle Scholar
LUQUET, S., LOPEZ-SORIANO, J., HOLST, D., GAUDEL, C., JEHL-PIETRI, C., FREDENRICH, A. and GRIMALDI, P.A. (2004) Roles of peroxisome proliferator-activated receptor delta (PPARdelta) in the control of fatty acid catabolism. A new target for the treatment of metabolic syndrome. Biochimie 86: 833-837.Google Scholar
MATSUBARA, Y., SATO, K., ISHII, H. and AKIBA, Y. (2005) Changes in mRNA expression of regulatory factors involved in adipocyte differentiation during fatty acid induced adipogenesis in chicken. Comparative Biochemistry and Physiology - Part A 141: 108-115.Google Scholar
McDOUGALD, O.A. and LANE, M.D. (1995) Transcriptional regulation of gene expression during adipocyte differentiation. Annual Review of Biochemistry 64: 345-373.Google Scholar
MENG, H., LI, H., ZHAO, J.G. and GU, Z.L. (2005) Differential expression of peroxisome proliferator-activated receptors alpha and gamma gene in various chicken tissues. Domestic Animal Endocrinology 28: 105-110.Google Scholar
MORAES, M.L., RIBEIRO, A.M.L., SANTIN, E. and KLASING, K.C. (2016) Effects of conjugated linoleic acid and lutein on the growth performance and immune response of broiler chickens. Poultry Science 95: 237-246.Google Scholar
MUKHERJEE, R., JOW, L., CROSTON, G.E. and PATERNITI, J.R. (1997) Identification, characterisation, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARγ2 versus PPARγ1 and activation with retinoid X receptor agonists and antagonists. Journal of Biological Chemistry 272: 8071-8076.Google Scholar
NAGY, L., TONTONOZ, P., ALVAREZ, J.G., CHEN, H. and EVANS, R.M. (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 93: 229-240.Google Scholar
NTAMBI, J.M. and YOUNG-CHEUL, K. (2000) Adipocyte differentiation and gene expression. Journal of Nutrition 130: 3122S-3126S.Google Scholar
OKUNO, M., ARIMOTO, E., IKENOBU, Y., NISHIHARA, T. and IMAGAWA, M. (2001) “Dual DNA-binding specificity of peroxisome-proliferator-activated receptor γ controlled by heterodimer formation with retinoid X receptor γ,” Biochemical Journal 353: 193-198.Google Scholar
OJANO-DIRAIN, C., TOYOMIZU, M., WING, T., COOPER, M. and BOTTJE, W.G. (2007) Gene Expression in Breast Muscle and Duodenum from Low and High Feed Efficient Broilers. Poultry Science 86: 372-381.Google Scholar
RAMIAH, S.K., MENG, G.Y., WEI, T.S., KEONG, Y.S. and EBRAHIMI, M. (2014) Dietary Conjugated Linoleic Acid Supplementation Leads to Downregulation of PPAR Transcription in Broiler Chickens and Reduction of Adipocyte Cellularity. PPAR Research 2014: ID 137652. Article ID 137652, 10 pages, 2014. doi:10.1155/2014/137652.CrossRefGoogle Scholar
ROYAN, M., MENG, G.Y., OTHMAN, F., SAZILI, A.Q. and NAVIDSHAD, B. (2011) Effects of conjugated linoleic acid, fish oil and soybean oil on PPARs (α & γ) mRNA expression in broiler chickens and their relation to body fat deposits. International Journal of Molecular Sciences 12: 8581-8595.CrossRefGoogle ScholarPubMed
ROSEN, E.D. and SPIEGELMAN, B.M. (2001) PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. The Journal of Biological Chemistry 276: 37731-37734.Google Scholar
SANZ, M., LOPEZ-BOTE, C.J., MENOYO, D. and BAUTISTA, J.M. (2000) Abdominal fat deposition and fatty acid synthesis are lower and beta-oxidation is higher in broiler chickens fed diets containing unsaturated rather than saturated fat. Journal of Nutrition 130: 3034-3037.Google Scholar
SATO, K., AKIBA, Y., CHIDA, Y. and TAKAHASHI, K. (1999) Lipoprotein hydrolysis and fat accumulation in chicken adipose tissues are reduced by chronic administration of lipoprotein lipase monoclonal antibodies. Poultry Science 78: 1286-1291.Google Scholar
SATO, K., FUKAO, K., SEKI, Y. and AKIBA, Y. (2004) Expression of the chicken peroxisome proliferatoractivated receptor-γ gene is influenced by aging, nutrition, and agonist administration. Poultry Science 83: 1342-1347.Google Scholar
SATO, K. and AKIBA, Y. (2002) Lipoprotein lipase mRNA expression in abdominal adipose tissue is little modified by age and nutritional state in broiler chickens. Poultry Science 81: 846-852.Google Scholar
SATO, K., MATSUSHITA, K., MATSUBARA, Y., KAMADA, T. and AKIBA, Y. (2008) Adipose tissue fat accumulation is reduced by a single intraperitoneal injection of peroxisome proliferator-activated receptor gamma agonist when given to newly hatched chicks. Poultry Science 87: 2281-2286.Google Scholar
SATO, K., ABE, H., KONO, T., YAMAZAKI, M., NAKASHIMA, K., KAMADA, T. and AKIBA, Y. (2009) Changes in peroxisome proliferator-activated receptor gamma gene expression of chicken abdominal adipose tissue with different age, sex and genotype. Animal Science Journal 80: 322-327.CrossRefGoogle ScholarPubMed
SCHOONJANS, K., PEINADO-ONSURBE, J. and LEFEBVRE, A.M. (1996a) PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO Journal 15: 5336-5348.Google Scholar
SCHOONJANS, K., STAELS, B. and AUWERX, J. (1996b) Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. Journal of Lipid Research 37: 907-925.Google Scholar
SELVARAJ, R.K. and KLASING, K.C. (2006) Lutein and Eicosapentaenoic Acid Interact to Modify iNOS mRNA Levels through the PPARg/RXR Pathway in Chickens and HD11 Cell Lines. Journal of Nutrition 136: 1610-1616.Google Scholar
SHIN, D.W., KIM, S.N., LEE, S.M., LEE, W., SONG, M.J., PARK, S.M., LEE, T.R., BAIK, J.H., KIM, H.K., HONG, J.H. and NOH, M. (2009) (−)− Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochemical Pharmacology 77: 125-133.Google Scholar
TAKADA, I. and KOBAYASHI, M. (2013) Structural Features and Transcriptional Activity of Chicken PPARs (α, β, and γ). PPAR Research Article ID: 186312.Google Scholar
TONG, Q., DALGIN, G., XU, H., TING, C.N., LEIDEN, J.M. and HOTAMISLIGIL, G.S. (2000) Function of GATA Transcription Factors in Preadipocyte Adipocyte Transition. Science 290: 134-138.Google Scholar
TONTONOZ, P., HU, E., GRAVES, R.A., BUDAVARI, A.I. and SPIEGALMAN, B.M. (1994a) mPPAR-y2: tissue specific regulator of an adipocyte enhancer. Genes & Development 8: 1224-1234.Google Scholar
TONTONOZ, P., HU, E. and SPIEGALMAN, B.M. (1994b) Stimulation of adipogenesis in fibroblasts by PPAR-y2 a lipid-activated transcription factor. Cell 79: 1147-1156.CrossRefGoogle ScholarPubMed
VILLALBA, P.G., JIMENEZ-LARA, A.M. and ARANDA, A. (1996) Vitamin D interferes with transactivation of the growth hormone gene by thyroid hormone and retinoic acid. Molecular and Cellular Biology 16: 318-327.Google Scholar
WAKI, H., PARK, K.W., MITRO, T., PEI, L., DAMOISEAUX, R., WILPITZ, D.C., REUE, K., SAEZ, E. and TONTONOZ, P. (2007) The Small Molecule Harmine Is an Antidiabetic Cell-Type-Specific Regulator of PPARγ Expression. Cell Metabolism 5: 357-370.Google Scholar
WANG, Y., MU, Y., LI, H., DING, N., WANG, Q., WANG, Y., WANG, S. and WANG, N. (2008) Peroxisome proliferator-activated receptor-gamma gene: a key regulator of adipocyte differentiation in chickens. Poultry Science 87: 226-232.Google Scholar
WANG, Y., BRAHMAKSHATRIYA, V., ZHU, H., LUPIANI, B., REDDY, S.M., YOON, B.J., GUNARATNE, P.H., KIM, J.H., CHEN, R., WANG, J. and ZHOU, H. (2009) Identification of differentially expressed mRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genomics 10: 512.CrossRefGoogle Scholar
WANG, H.M., ZHAO, Y.X., ZHANG, S., LIU, G.D., KANG, W.Y., TANG, H.D., DING, J.Q. and CHEN, S.D. (2010) PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes. Journal of Alzheimer's Disease 20: 1189-1199.Google Scholar
WANG, H., JIANG, R., HE, Q., ZHANG, Y., ZHANG, Y., LI, Y., ZHUANG, R., LUO, Y., LI, Y., WAN, J., TANG, Y., YU, H., JIANG, Q. and YANG, J. (2012) Expression Pattern of Peroxisome Proliferator-Activated Receptors in Rat Hippocampus following Cerebral Ischemia and Reperfusion Injury. PPAR Research 2012: ID 596394.Google Scholar
WERMAN, A., HOLLENBERG, A., SOLANES, G., BJORBAEK, C., VIDAL-PUIG, A.J. and FLIER, J.S. (1997) Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor γ (PPARγ). Differential activity of PPARγ1 and -2 isoforms and influence of insulin. Journal of Biological Chemistry 272: 20230-20235.Google Scholar
WHITEHEAD, J.P. (2011) Diabetes: new conductors for the peroxisome proliferator-activated receptor γ (PPARγ) orchestra. International Journal of Biochemistry and Cell Biology 43: 1071-1074.CrossRefGoogle ScholarPubMed
WU, Z., XIE, Y., MORRISON, R.F., BUCHER, N.L. and FARMER, S.R. (1998) PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. The Journal of Clinical Investigation 101: 22-32.Google Scholar
WU, Y., LIU, X., XIAO, H. and ZHANG, H. (2010) The differential expression of peroxisome proliferators-activated receptors in various duck tissues. Molecular Biology Reports 37: 1235-1240.Google Scholar
YU, K., BAYONA, W., KALLEN, C.B., YU, K., HARDING, H.P., RAVERA, C.P., McMAHON, G., BROWN, M. and LAZAR, M.A. (1995) Differential activation of peroxisome proliferator-activated receptors by eicosanoids. Journal of Biological Chemistry 270: 23975-23983.Google Scholar
ZHANG, J., FU, M., CUI, T., XIONG, C., XU, K., ZHONG, W., XIAO, Y., FLOYD, D., LIANG, J., LI, E., SONG, Q. and CHEN, Y.E. (2004) Selective disruption of PPARgamma 2 impairs the development of adipose tissue and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America 101: 10703-10708.Google Scholar
ZHANG, H., CHEN, Q., YANG, M., ZHU, B., CUI, Y., XUE, Y., GONG, N., CUI, A., WANG, M., SHEN, L., ZHANG, S., FANG, F. and CHANG, Y. (2013) Mouse KLF11 regulates hepatic lipid metabolism. Journal of Hepatology 58: 763-770.CrossRefGoogle ScholarPubMed