Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T22:21:51.230Z Has data issue: false hasContentIssue false

Infectious bronchitis virus: evolution and vaccination

Published online by Cambridge University Press:  19 January 2016

S. UMAR*
Affiliation:
National Veterinary School, Toulouse, France Department of Pathobiology, University of Arid Agriculture, Rawalpindi, Pakistan
M.A.A. SHAH
Affiliation:
Department of Pathobiology, University of Arid Agriculture, Rawalpindi, Pakistan
M.T. MUNIR
Affiliation:
Department of Pathobiology, University of Arid Agriculture, Rawalpindi, Pakistan
U. AHSAN
Affiliation:
Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın 09016, Turkey
K. KABOUDI
Affiliation:
Department of Poultry Farming and Pathology, National Veterinary School, Tunisia
*
Corresponding author: s.umar@envt.fr
Get access

Abstract

The emergence and evolution of viral pathogens cause a major problem in the poultry industry. Mutation and recombination processes are involved in the genetic and phenotypic variations of infectious bronchitis virus (IBV) in chickens, leading to the emergence of new variant strains, and give rise to virus population diversity to be modelled by the host, particularly by the immune system. The consequence is the continuous emergence of new variants with regard to pathotypes, serotypes, and protectotypes. The viral genes encoding the spike, replicase and nucleocapsid proteins can be considered the main genomic regions, which indicate the evolution processes of IBV. Despite the use of vaccination, new IBV variants are evolving and circulating in the field and should be considered as initial candidates for vaccine development. The new generation vaccines developed against locally prevailing IBV strains may be more helpful and avoid the reversion of virulence in live vaccine viruses. Understanding the mechanisms underlying the evolution of IBV has basic relevance and, without doubt, is essential to appropriately control and prevention of the disease.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ABRO, S.H., RENSTRÖM, L.H.M., ULLMAN, K., BELÁK, S. and BAULE, C. (2012a) Characterisation and analysis of the full-length genome of a strain of the European QX-like genotype of infectious bronchitis virus. Archives of Virology 157: 1211-1215.CrossRefGoogle ScholarPubMed
ABRO, S.H., RENSTRÖM, L.H.M., ULLMAN, K., ISAKSSON, M., ZOHARI, S., JANSSON, D.S., BELÁK, S. and BAULE, C. (2012b) Emergence of novel strains of avian infectious bronchitis virus in Sweden. Veterinary Microbiology 155: 237-246.CrossRefGoogle ScholarPubMed
ACEVEDO, A.M., DE ARCE, H.D., BRANDAO, P.E., COLAS, M., OLIVEIRA, S. and PEREZ, L.J. (2012) First evidence of the emergence of novel putative infectious bronchitis virus genotypes in Cuba. Research in Veterinary Science 93: 1046-1049.CrossRefGoogle ScholarPubMed
ALMEIDA, D.O., TORTELLY, R., NASCIMENTO, E.R., CHAGAS, M.A., KHAN, M.I. and PEREIRA, V.L.A. (2012) Avian infectious bronchitis and deep pectoral myopathy-a case control study. Poultry Science 91: 3052-3056.CrossRefGoogle Scholar
AWAD, F., BAYLIS, M. and GANAPATHY, K. (2014) Detection of variant infectious bronchitis viruses in broiler flocks in Libya. International Journal of Veterinary Science and Medicine 2: 78-82.CrossRefGoogle Scholar
BRANDAO, P.E. (2010) Avian infectious bronchitis virus in Brazil: a highly complex virus meets a highly susceptible host population. Revista Brasileira de Ciência Avícola 12: 121-124.CrossRefGoogle Scholar
CAVANAGH, D. (2007) Coronavirus avian infectious bronchitis virus. Veterinary Research 38: 281-297.CrossRefGoogle ScholarPubMed
COOK, J.K.A., JACKWOOD, M. and JONES, R.C. (2012) The long view: 40 years of infectious bronchitis research. Avian Pathology 41: 239-250.CrossRefGoogle Scholar
DE WIT, J.J., COOK, J.K.A. and VAN DER HEIJDEN, H.M.J.F. (2011) Infectious bronchitis virus variants: a review of the history, current situation and control measures. Avian Pathology 40: 223-235.CrossRefGoogle Scholar
DHAMA, K., MAHENDRAN, M., GUPTA, P.K. and RAI, A. (2008) DNA vaccines and their applications in veterinary practice: Current perspectives. Veterinary Research Communications 32: 341-356.CrossRefGoogle ScholarPubMed
DHAMA, K., SINGH, S.D., BARATHIDASAN, R., DESINGU, P.A., CHAKRABORTY, S., TIWARI, R. and KUMAR, M.A. (2014) Emergence of avian infectious bronchitis virus and its variants need better diagnosis, prevention and control strategies: a global perspective. Pakistan Journal of Biological Sciences 17: 751-767.CrossRefGoogle ScholarPubMed
DUCATEZ, M.F., MARTIN, A.M., OWOADE, A.A., OLATOYE, I.O., ALKALI, B.R., MAIKANO, I., SNOECK, C.J., SAUSY, A., CORDIOLI, P. and MULLER, C.P. (2009) . Characterisation of a new genotype and serotype of infectious bronchitis virus in Western Africa. Journal of General Virology 90: 2679-2685.CrossRefGoogle ScholarPubMed
ECKERLE, L.D., BECKER, M.M., HALPIN, R.A., LI, K., VENTER, E., LU, X., SCHERBAKOVA, S., GRAHAM, R.L., BARIC, R.S., STOCKWELL, T.B., SPIRO, D.J. and DENISON, M.R. (2010) Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathogen 6: e1000896.CrossRefGoogle Scholar
ECKERLE, L.D., LU, X., SPERRY, S.M., CHOI, L. and DENISON, M.R. (2007) High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. Journal of Virology 81: 12135-12144.CrossRefGoogle ScholarPubMed
FRAGA, A.P., BALESTRIN, E., IKUTA, N., FONSECA, A.S.K., SPILKI, F.R., CANAL, C.W. and LUNGE, V.R. (2013) Emergence of a new genotype of avian infectious bronchitis virus in Brazil. Avian Diseases 57: 225-232.CrossRefGoogle ScholarPubMed
GUO, Y., TISONCIK, J., MCREYNOLDS, S., FARZAN, M., PRABHAKAR, B.S., GALLAGHER, T., RONG, L. and CAFFREY, M. (2009) Identification of a new region of SARS-CoV S protein critical for viral entry. Journal of Molecular Biology 394: 600-605.CrossRefGoogle ScholarPubMed
HAN, Z., SUN, C., YAN, B., ZHANG, X., WANG, Y., LI, C., ZHANG, Q., MA, Y., SHAO, Y., LIU, Q., KONG, X. and LIU, S. (2011) A 15-year analysis of molecular epidemiology of avian infectious bronchitis coronavirus in China. Infection, Genetics and Evolution 11: 190-200.CrossRefGoogle ScholarPubMed
HE, K., LI, M., WEI, P., MO, M.L., WEI, T.C. and LI, K.R. (2012) Complete genome sequence of an infectious bronchitis virus chimera between co circulating heterotypic strains. Journal of Virology 86: 13887-13888.CrossRefGoogle Scholar
HOLMES, E.C. (2009) The Evolution and Emergence of RNA Viruses (first ed.) Oxford University Press Inc., New York.CrossRefGoogle Scholar
HONG, S.M., KWON, H.J., KIM, I.H., MO, M.L. and KIM, J.H. (2012) Comparative genomics of Korean infectious bronchitis viruses (IBVs) and an animal model to evaluate pathogenicity of IBVs to the reproductive organs. Viruses 4: 2670-2683.CrossRefGoogle Scholar
HON, CC., LAM, T.Y., SHI, Z.L., DRUMMOND, A.J., YIP, C.W., ZENG, F., LAM, P.Y. and LEUNG, F.C. (2008) Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. Journal of Virology 82: 1819-1826.CrossRefGoogle ScholarPubMed
JACKWOOD, M.W., HILT, D.A., MCCALL, A.W., POLIZZI, C.N., MCKINLEY, E.T. and WILLIAMS, S.M. (2009) Infectious bronchitis virus field vaccination coverage and persistence of Arkansas-type viruses in commercial broilers. Avian Diseases 53: 175-183.CrossRefGoogle ScholarPubMed
JACKWOOD, M.W. (2012) Review of infectious bronchitis virus around the world. Avian Diseases 56: 634-641.CrossRefGoogle ScholarPubMed
JACKWOOD, M.W., HALL, D. and HANDEL, A. (2012) Molecular evolution and emergence of avian gammacoronaviruses. Infection, Genetics and Evolution 12: 1305-1311.CrossRefGoogle ScholarPubMed
JONES, R.C. (2010) Viral respiratory diseases (ILT, aMPV infections, IB): Are they ever under control? British Poultry Science 51: 1-11.CrossRefGoogle ScholarPubMed
KATARIA, J.M., MOHAN, C.M., DEY, S., DASH, B.B. and DHAMA, K. (2005) Diagnosis and immunoprophylaxis of economically important poultry diseases: A review. Indian Journal of Animal Sciences 75: 555-567.Google Scholar
KRAPEZ, U., SLAVEC, B. and ROJS, O.Z. (2011) Circulation of infectious bronchitisvirus strains from Italy 02 and QX genotypes in Slovenia between 2007 and 2009. Avian Diseases 55: 155-161.CrossRefGoogle Scholar
KUO, S.M., KAO, H.W., HOU, M.H., WANG, C.H., LIN, S.H. and SU, H.L. (2013) Evolution of infectious bronchitis virus in Taiwan: Positively selected sites in the nucleocapsid protein and their effects on RNA-binding activity. Veterinary Microbiology 162: 408-418.CrossRefGoogle ScholarPubMed
LI, L., KANG, H., LIU, P., MAKKINJE, N., WILLIAMSON, S.T., LEIBOWITZ, J.L. and GIEDROC, D.P. (2008) Structural lability in stem-loop 1 drives a 5' UTR-3' UTR interaction in coronavirus replication. Journal of Molecular Biology 377: 790-803.CrossRefGoogle ScholarPubMed
LIM, T.H., LEE, H.J., LEE, D.H., LEE, Y.N., PARK, J.K., YOUN, H.N., KIM, M.S., LEE, J.B., PARK, S.Y., CHOI, I.S. and SONG, C.S. (2011) An emerging recombinant cluster of nephropathogenic strains of avian infectious bronchitis virus in Korea. Infection, Genetics and Evolution 11: 678-85.CrossRefGoogle ScholarPubMed
LIN, K.H., LIN, C.F., CHIOU, S.S., HSU, A.P., LEE, M.S., CHANG, C.C., CHANG, T.J., SHIEN, J.H. and HSU, W.L. (2012) Application of purified recombinant antigenic spike fragments to the diagnosis of avian infectious bronchitis virus infection. Applied Microbiology and Biotechnology 95: 233-242.CrossRefGoogle Scholar
LIU, X., MA, H., XU, Q., SUN, N., HAN, Z., SUN, C., GUO, H., SHAO, Y., KONG, X. and LIU, S. (2013a) Characterisation of a recombinant coronavirus infectious bronchitis virus with distinct S1 subunits of spike and nucleocapsid genes and a 3' untranslated region. Veterinary Microbiology 162: 429-436.CrossRefGoogle Scholar
LIU, X., SHAO, Y., MA, H., SUN, C., ZHANG, X., LI, C., HAN, Z., YAN, B., KONG, X. and LIU, S. (2013b) Comparative analysis of four Massachusetts type infectious bronchitis coronavirus genomes reveals a novel Massachusetts type strain and evidence of natural recombination in the genome. Infection, Genetics and Evolution 14: 29-38.CrossRefGoogle ScholarPubMed
LIU, S., ZHANG, X., WANG, Y., LI, C., HAN, Z., SHAO, Y., LI, H. and KONG, X. (2009a) Molecular characterisation and pathogenicity of infectious bronchitis coronaviruses: complicated evolution and epidemiology in China caused by co-circulation of multiple types of infectious bronchitis coronaviruses. Inter virology 52: 223-234.Google Scholar
LIU, S., ZHANG, X., WANG, Y., LI, C., LIU, Q., HAN, Z., ZHANG, Q., KONG, X. and TONG, G. (2009b) Evaluation of the protection conferred by commercial vaccines and attenuated heterologous isolates in China against the CK/CH/LDL/97I strain of infectious bronchitis coronavirus. The Veterinary Journal 179: 130-136.CrossRefGoogle Scholar
MA, H., SHAO, Y., SUN, C., HAN, Z., LIU, X., GUO, H., LIU, X., KONG, X. and LIU, S. (2012) Genetic diversity of avian infectious bronchitis coronavirus in recent years in China. Avian Diseases 56: 15-28.CrossRefGoogle ScholarPubMed
MARANDINO, A., PEREDA, A., TOMÁS, G., HERNÁNDEZ, M., IRAOLA, G., CRAIG, M.I., HERNÁNDEZ, D., BANDA, A., VILLEGAS, P., PANZERA, Y. and PÉREZ, R. (2015) Phylodynamic analysis of avian infectious bronchitis virus in South America. Journal of General Virology 96: 1340-1346.CrossRefGoogle ScholarPubMed
MATTHIJS, M.G.R., VAN ECK, J.H.H., LANDMAN, W.J.M. and STEGEMAN, J.A. (2003) Ability of Massachusetts-type infectious bronchitis virus to increase colibacillosis susceptibility in commercial broilers: a comparison between vaccine and virulent field virus. Avian Pathology 32: 473-481.CrossRefGoogle ScholarPubMed
MO, M., HUANG, B., WEI, P., WEI, T., CHEN, Q., WANG, X., LI, M. and FAN, W. (2012) Complete genome sequences of two Chinese virulent avian coronavirus infectious bronchitis virus variants. Journal of Virology 86: 10903-10904.CrossRefGoogle ScholarPubMed
MONTASSIER, H.J. (2010) Molecular Epidemiology and Evolution of Avian Infectious Bronchitis Virus. Brazilian Poultry Science 12: 87-96.CrossRefGoogle Scholar
SNIJDER, E.J., BREDENBEEK, P.J., DOBBE, J.C., THIEL, V., ZIEBUHR, J., POON, L.L., GUAN, Y., ROZANOV, M., SPAAN, W.J.M. and GORBALENYA, A.E. (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. Journal of Molecular Biology 331: 991-1004.CrossRefGoogle ScholarPubMed
SUMI, V., SINGH, S.D., DHAMA, K., GOWTHAMAN, V., BARATHIDASAN, R. and SUKUMAR, K. (2012) Isolation and molecular characterisation of infectious bronchitis virus from recent outbreaks in broiler flocks reveals emergence of novel strain in India. Tropical Animal Health and Production 44: 1791-1795.CrossRefGoogle ScholarPubMed
TORO, H., PENNINGTON, D., GALLARDO, R.A., VAN SANTEN, V.L., van GINKEL, F.W., ZHANG, J. and JOINER, K.S. (2012a) Infectious bronchitis virus subpopulations in vaccinated chickens after challenge. Avian Diseases 56: 501-508.CrossRefGoogle ScholarPubMed
TORO, H., VAN SANTEN, V.L. and JACKWOOD, M.W. (2012b) Genetic diversity and selection regulates evolution of infectious bronchitis virus. Avian Diseases 56: 449-455.CrossRefGoogle ScholarPubMed
THOR, S.W., HILT, D.A., KISSINGER, J.C., PATERSON, A.H. and JACKWOOD, M.W. (2011) Recombination in avian gamma-coronavirus infectious bronchitis virus. Viruses 3: 1777-1799.CrossRefGoogle ScholarPubMed
ULLAH, S., RIAZ, N., UMAR, S. and SHAH, M.A.A. (2013) DNA Vaccines against Avian Influenza: current research and future prospects. World's Poultry Science Journal 69:125-133.CrossRefGoogle Scholar
UMAR, S., ARIF, M., SHAH, M.A.A., MUNIR, M.T., AHMED, S. and KHAN, M.I. (2015a) Application of Avian cytokines as immuno-modulating agents. World's Poultry Science Journal 71: 643-654.CrossRefGoogle Scholar
UMAR, S., YOUNUS, M., ARSHAD, H.U., SHAH, M.A.A., KHAN, I.A., NUMAN, M. and TAHIR, F. (2015b) Recent advances in vaccination strategies and future perspectives for the control of Newcastle disease in Pakistan: A review. International Journal of Veterinary Sciences 4: 136-141Google Scholar
UMAR, S., ULLAH, S., YAQOOB, M., SHAH, M.A.A and DUCATEZ, M. (2014) Chicken infectious anaemia, an immunosuppressive disease of poultry birds. World's Poultry Science Journal 70: 759-766.CrossRefGoogle Scholar
VALASTRO, V., MONNE, I., FASOLATO, M., CECCHETTIN, K., PARKER, D., TERREGINO, C. and CATTOLI, G. (2010) QX-type infectious bronchitis virus in commercial flocks in the UK. Veterinary Record 167: 865-866.CrossRefGoogle ScholarPubMed
WANG, X.Y., LI, M., WEI, P., CHEN, Q.Y., WEI, Z.J., MO, M.L. and WEI, T.C. (2012) . Evaluation of antigenic relationship of Guangxi isolates of infectious bronchitis virus. Chinese Journal of Virology, 28: 621-627.Google ScholarPubMed