Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T00:42:12.437Z Has data issue: false hasContentIssue false

The activity and use of zinc in poultry diets

Published online by Cambridge University Press:  22 January 2016

S. NAZ*
Affiliation:
Department of Zoology, Government College University, Faisalabad, Pakistan
M. IDRIS
Affiliation:
University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Pakistan
M.A. KHALIQUE
Affiliation:
University of Poonch, Rawalakot, Azad Kashmir, Pakistan
ZIA-UR-RAHMAN
Affiliation:
Department of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
I.A. ALHIDARY
Affiliation:
Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, PO Box 2460 Riyadh 11451, Kingdom of Saudi Arabia
M.M. ABDELRAHMAN
Affiliation:
Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, PO Box 2460 Riyadh 11451, Kingdom of Saudi Arabia
R.U. KHAN
Affiliation:
Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, PO Box 2460 Riyadh 11451, Kingdom of Saudi Arabia Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
N. CHAND
Affiliation:
Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
U. FAROOQ
Affiliation:
University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Pakistan
S. AHMAD
Affiliation:
Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
*
Corresponding author: drshabananaz@gcuf.edu.pk
Get access

Abstract

Zinc (Zn) is an important nutrient in poultry and its deficiency has been linked with various disorders, in addition to depressed growth and performance. It is now recognised that Zn has a major role in antioxidation, growth and development, production, immunity and stress related issues. Supplementation of Zn can improve growth, augment immunity, enhance antioxidant capacity, increase endocrine secretion and interact with other minerals in the gut. In this review, some of the basic information regarding the importance and activity of Zn within the body and the addition of Zn in poultry diets is discussed.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ALODAN, M.A. and MASHALY, M.M. (1999) Effect of induced molting in laying hens on production and immune parameters. Poultry Science 78: 171-177.CrossRefGoogle ScholarPubMed
BAHAKAIM, A.S.A., ABDEL MAGIED, H.A., OSMAN, S.M.H., OMAR, A.S., ABDELMALAK, N.Y. and RAMADAN, N.A. (2014) Effect of using different levels and sources of zinc in layer's diets on egg zinc enrichment. Egyptian Poultry Science Journal 34 (I): 39-56.CrossRefGoogle Scholar
BARRIE, S.A., WRIGHT, J.V., PIZZORNO, J.E., KUTTER, E. and BARSON, P.C. (1987) The comparative absorption of zinc picolinate, zinc citrate and zinc gluconate in humans. Agent Action 21: 223-228.CrossRefGoogle ScholarPubMed
BEN NATHAN, D., HELLER, E.D. and PEREK, M. (1977) The effect of starvation on antibody production of chicks . Poultry Science 56: 1468-1471.CrossRefGoogle Scholar
BRAKE, J. and THAXTON, P. (1979) Physiological changes in caged layers during a forced molt. 2. Gross changes in organs. Poultry Science 58: 707-716.CrossRefGoogle ScholarPubMed
BREEDING, S.W., BRAKE, J., GARLICH, J.D. and JOHNSON, A.L. (1992) Molt induced by dietary zinc in a low-calcium diet. Poultry Science 71: 168-180.CrossRefGoogle Scholar
BURELL, A.L., DOZIER III, W.A., DAVIS, A.J., COMPTON, M.M., FREEMAN, M.E., VENDRELL, P.F. and WARD, T.L. (2004) Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. British Poultry Science 45: 255-263.Google Scholar
CAO, J., HENRY, P.R., GUO, R., HOLWERDA, R.A., TOTH, J.P., LITTELL, R.C., MILES, R.D. and AMMERMAN, C.B. (2000) Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. Journal of Animal Science 78: 2039-2054.CrossRefGoogle ScholarPubMed
CHAND, N., NAZ, S., KHAN, A., KHAN, S. and KHAN, R.U. (2014) Performance traits and immune response of broiler chicks treated with zinc and ascorbic acid supplementation during cyclic heat stress. International Journal Biometeorology 58: 2153-2157.CrossRefGoogle ScholarPubMed
CHEN, D., WAITE, L.C. and PIERCE, W.M. (Jr) (1999) In vitro effects of zinc on markers of bone formation. Biological Trace Element Research 68: 225-234.CrossRefGoogle ScholarPubMed
CHIA, I., ONG, C., CHUA, L., HO, M. and TAY, S. (2000) Comparison of various sperm parameters and plasma zinc concentrations in blood and seminal of fertile and infertile men. Journal of Andrology 21: 53-57.CrossRefGoogle ScholarPubMed
CORNESCU, G.M., CRISTE, R.D., UNTEA, A.E., PANAITE, T.D. and OLTEANU, M. (2013) Supplementation of manganese and zinc in laying hens diet improves eggshell quality. Lucrări Ştiinţifice-Seria Zootehnie 60: 29-34.Google Scholar
DELL, B.L.O., NEWBEBNE, P.M. and SAVAGE, J.E. (1957) Significance of dietary zinc for the growing chicken. Federation Proceedings 16: 394.Google Scholar
DEWAR, W.A., WIGHT, P.A.L., PEARSON, R.A. and GENTLE, M.J. (1983) Toxic effects of high concentrations of zinc oxide in the diet of the chick and laying hen. British Poultry Science 24: 397-404.CrossRefGoogle ScholarPubMed
DOMINGUES, C.H.DE.F., SGAVIOLI, S., PRAES, M.F.F.M., CASTIBLANCO, D.M.C., MARCHIZELI, P.C.A., PEREIRA, A.A., DUARTE, K.F. and JUNQUEIRA, O.M. (2014) Use of nicarbazin, salinomycin and zinc oxide as alternative molting methods for commercial laying hens. Brazilian Journal of Poultry Science 16 (2): 25-30.CrossRefGoogle Scholar
EL-DEEK, A. A. and AL-HARTHI, M.A. (2004) Post molt performance parameters of broiler breeder hens associated with molt induced by feed restriction, high dietary zinc and fasting. International Journal of Poultry Science 3 (7): 456-462.Google Scholar
EL-GENDI, G.M., SAMAK, H.R. and MOHAMED, A.A. (2009) Effect of induced molting on some productive and physiological traits in hy-line hens. Egyptian Poultry Science 29: 385-405.Google Scholar
EL-HUSSEINY, O.M., ABD-ELSAMEE, M.O., OMARA, I.I. and FOUAD, A.M. (2008) Effect of dietary zinc and niacin on laying hens performance and egg quality. International Journal of Poultry Science 7 (8): 757-764.CrossRefGoogle Scholar
ENSMINGER, M.E., OLDFIELD, J.E. and HEINEMANN, W.W. (1990) In: Feeds and Nutrition. The Ensminger Publishing Company Clovis CA. pp: 8-120.Google Scholar
FU, H.W., MOOMAW, J.F., MOOMAW, C.R. and CASEY, P.J. (1996) Identification of a cysteine residue essential for activity of protein farnesyl transferase. Cys299 is exposed only upon removal of zinc from the enzyme. Journal of Biological Chemistry 271: 28541-28548.CrossRefGoogle ScholarPubMed
GERZILOV, V., BOZAKOVA, N. and PETROV, P. (2015) Influence of dietary zinc and vitamin c supplementation on some blood biochemical parameters and egg production in free-range laying hens. Journal of Central European Agriculture 16 (1): 208-218.CrossRefGoogle Scholar
GIBSON, S.W., STEVENSON, M.H. and JACKSON, N.(1986) Comparison of the effects of feeding diets supplemented with zinc oxide or zinc acetate on the performance and tissue mineral content of mature female fowls. British Poultry Science 27: 391-402.CrossRefGoogle ScholarPubMed
GRIES, C.L. and SCOTT, M.L. (1972) Pathology of selenium deficiency in the chick. Journal of Nutrition 102: 1287-1296.CrossRefGoogle ScholarPubMed
GUPTA, R.P., VERMA, P.C. and GARG, S.L. (1997) Effect of experimental zinc deficiency on thyroid gland in guinea-pigs. Annals Nutrition Metabolism 41: 376-381.CrossRefGoogle ScholarPubMed
HOLT, P.S. and PORTER, R.E.J.(1992) Microbiological and histopathological effects of an induced-molt fasting procedure on a salmonella enteritidis infection in chickens. Avian Disease 36: 610-618.CrossRefGoogle ScholarPubMed
HOSHINO, S., SUZUKI, M., KAKEGAWA, T., IMAI, K., WAKITA, M., KOBAYASHI, Y. and YAMADA, Y.(1988) Changes in plasma thyroid hormones, luteinizing hormone, estradiol, progesterone and corticosterone of laying hens during a forced-molt. Comparative Biochemistry Physiology 90: 355-359.CrossRefGoogle ScholarPubMed
HOSSEINI-MANSOUB, N., CHEKANI-AZAR, S., TEHRANI, A.A., LOTFI, A. and MANESH, M.K. (2010) Influence of dietary vitamin E and zinc on performance, oxidative stability and some blood measures of broiler chickens reared under heat stress (35°C). Journal of Agrobiology 27 (2): 103-110.CrossRefGoogle Scholar
JACKSON, N., GIBSON, S.W. and STEVENSON, M.H. (1986) Effects of short-and- long term feeding of zinc oxide-supplemented diets on the mature, female domestic fowl with special reference to tissue mineral content. British Journal of Nutrition 55: 333-349.CrossRefGoogle ScholarPubMed
JENSEN, L.S. (1975) Precipitation of a selenium deficiency by high dietary levels of copper and zinc. Proceedings of the Society for Experimental Biology and Medicine 149: 113-116.CrossRefGoogle ScholarPubMed
KHAN, R.U. (2011) Antioxidants and poultry semen quality. World's Poultry Science Journal 67 (2): 297-308.CrossRefGoogle Scholar
KHAN, R.U., NIKOUSEFAT, Z., JAVADANI, M., TUFARELLI, V. and LAUDADIO, V. (2011) Zinc-induced molting: production and physiology. World's Poultry Science Journal 67: 497-506.CrossRefGoogle Scholar
KHAN, R.U., RAHMAN, Z.U., JAVED, I. and MUHAMMAD, F. (2012) Effects of vitamins, probiotics and protein level on semen traits and some seminal plasma macro and micro minerals of male broiler breeders after zinc-induced molting. Biological Trace Element Research 148: 44-52.CrossRefGoogle Scholar
KHAN, R.U., RAHMAN, Z., JAVED, I. and MUHAMMAD, F. (2013a) Supplementation of vitamins, probiotics and proteins on oxidative stress, enzymes and hormones in post-moult male broiler breeders. Archiv Tierzucht 61: 607-613.Google Scholar
KHAN, R.U., RAHMAN, Z., JAVED, I. and MUHAMMAD, F. (2013b) Supplementation of dietary vitamins, protein and probiotics on semen traits and immunohistochemical study of pituitary hormones in zinc-induced molted broiler breeders. Acta Histochemica 115: 698-704.CrossRefGoogle ScholarPubMed
KIDD, M.T., FERKET, P.R. and QURESHI, M.A. (1996) Zinc metabolism with special reference to its role in immunity. World's Poultry Science Journal 52: 309-323.CrossRefGoogle Scholar
KUBENA, L.F., KWON, Y.M., BYRD, J.A., WOODWARD, C.L., MOORE, R.W., ZIPRIN, R.L., ANDERSON, R.C., NISBET, D.J. and RICKE, S.C. (2001) Drinking water treatment and dietary treatment effects on Salmonella enteritidis in leghorn hens during forced molt. Poultry Science 80 (Suppl. 1): 88.Google Scholar
KUCUK, O., SAHIN, N. and SAHIN, K. (2003) Supplemental zinc and vitamin A can alleviate negative effects of heat stress in broiler chickens. Biological Trace Element Research 94: 225-235.CrossRefGoogle ScholarPubMed
LAZO, J.S., KUO, S.M., WOO, E.S. and PITT, B.R. (1998) The protein thiol metallothionein as an antioxidant and protectant against antineoplastic drugs . Chemo-Biological Interactions 111, 112: 255-262.CrossRefGoogle ScholarPubMed
LEESON, S. (2005) Trace mineral requirements of poultry - Validity of the NRC recommendations, in: TAYLOR-PICKARD, J.A. & TUCKER, L.A. (Eds) Redefining Mineral Nutrition, pp. 107-117 (Nottingham University Press, Nottingham, UK).Google Scholar
LUCK, M.R. and SCANES, C.G. (1980) Ionic and endocrine factors influencing the secretion of luteinizing hormone by chicken anterior pituitary cells in vitro. General Comparative Endocrinology 41: 260-265.CrossRefGoogle ScholarPubMed
MCCORMICK, C.C. and CUNNINGHAM, D.L. (1983) Inducing moult with dietary zinc oxide. Proceedings Cornell Nutrition Conference, Syracuse, NY, pp. 69-74.Google Scholar
MCCORMICK, C.C., MENARD, M.P. and COUSINS, R.J. (1981) Induction of hepatic metallothionein by feeding zinc to rats of depleted zinc status. American Journal of Physiology 240: E414-E421.Google ScholarPubMed
MCCORMICK, C.C. (1984) Induction and accumulation of metallothionein in liver and pancreas of chicks given oral zinc: A tissue comparison. Journal of Nutrition 114: 191-203.CrossRefGoogle ScholarPubMed
MENARD, M.P., MCCORMICK, C.C. and COUSINS, R.J. (1981) Regulation of intestinal metallothionein biosynthesis in rats by dietary zinc. Journal of Nutrition 111: 1353-1361.CrossRefGoogle ScholarPubMed
MOORE, R.W., PARK, S.Y., KUBENA, L.F., BYRD, J.A., MCREYNOLDS, J.L., BURNHAM, M.R., HUME, M.E., BIRKHOLD, S.G., NISBET, D.J. and RICKE, S.C. (2004) Comparison of zinc acetate and propionate addition on gastrointestinal tract fermentation and susceptibility of laying hens to salmonella enteritidis during forced molt . Poultry Science 83: 1276-1286.CrossRefGoogle ScholarPubMed
NILES, B.J., CLEGG, M.S., HANNA, L.A., CHOU, S.S., MOMMA, T.Y., HONG, H. and KEEN, C.L. (2008) Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters and iron storage proteins. Journal of Biological Chemistry 283: 5168-5177.CrossRefGoogle ScholarPubMed
NRC (1994) Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press , Washington, DC. USAGoogle Scholar
OGUIKE, M.A., IGBOELI, G., IBE, S.N. and IRONKWE, M.O. (2005) Physiological and endocrinological mechanisms associated with ovulatory cycle and induced-moulting in the domestic chicken - A Review. World's Poultry Science Journal 61: 625-632.CrossRefGoogle Scholar
ONBASILAR, E.E. and EROL, H. (2007) Effects of different forced molting methods on post molt production, corticosterone level, and immune response to sheep red blood cells in laying hens. Journal of Applied Poultry Research 16: 529-536.CrossRefGoogle Scholar
OTEIZA, P.L., OLIN, K.L., FRAGA, C.G. and KEEN, C.L. (1996) Oxidant defense systems in testes from zinc deficient rats. Proceedings of the Society of Experimental Biology and Medicine 213: 85-91.CrossRefGoogle ScholarPubMed
PARK, S.Y., BIRKHOLD, S.G., KUBENA, L.F., NISBET, D.J. and RICKE, S.C. (2004a) Review on the role of dietary zinc in poultry nutrition, immunity and reproduction. Biological Trace Element Research 101: 147-163.CrossRefGoogle ScholarPubMed
PARK, S.Y., BIRKHOLD, S.G., KUBENA, L.F., NISBET, D.J. and RICKE, S.C. (2004c) Effects of high zinc diets using zinc propionate on molt induction, organs and post molt egg production and quality in laying hens: Environment, health, and behavior. Poultry Science 83: 24-33.CrossRefGoogle Scholar
PARK, S.Y., KIM, W.K., BIRKHOLD, S.G., KUBENA, L.F., NISBET, D.J. and RICKE, S.C. (2004b) Using a feed-grade zinc propionate to achieve molt induction in laying hens and retain postmolt egg production and quality. Biological Trace Element Research 101:165-179.CrossRefGoogle ScholarPubMed
POWELL, S.R.(2000) The antioxidant properties of zinc. Journal of Nutrition 130: 1447S-1454S.CrossRefGoogle ScholarPubMed
RAO, A.V. and AGARWAL, S. (1999) Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A Review. Nutrition Research 19: 305-323.CrossRefGoogle Scholar
RAHMAN, H., QURESHI, M.S. and KHAN, R.U. (2014) Influence of dietary zinc on semen traits and seminal plasma antioxidant enzymes and trace minerals of Beetal bucks. Reproduction in Domestic Animals 48: 1004-1007.CrossRefGoogle Scholar
RICKE, S.C., KWON, Y.M., WOODWARD, C.L., BYRD, J.A., NISBET, D.J. and KUBENA, L.F. (2001) Limitation of Salmonella enteritidis colonization by diets containing low calcium and low zinc. Poultry Science 80 (Suppl. 1): 262 (Abstr.).Google Scholar
RUZ, M., CODOCEO, J., GALGANI, J., MUNOZ, L., GRAS, N., MUZZO, S., LEIVA, L. and BOSCO, C. (1999) Single and multiple selenium-zinc iodine deficiencies affect rat thyroid metabolism and ultra structure. Journal of Nutrition 129: 174-180.CrossRefGoogle Scholar
SADOVAL, M., HENRY, P.R., LITTELL, R.C., MILES, R.D., BUTCHER, G.D. and AMMERMAN, C.B. (1999) Effect of dietary zinc source and method of oral administration on performance and tissue trace mineral concentration of broiler chicks. Journal of Animal Science 77: 1788-1799.CrossRefGoogle ScholarPubMed
SAHIN, K., SMITH, M.O., ONDERCI, M., SAHIN, N., GURSU, M.F. and KUCUK, O. (2005) Supplementation of zinc from organic or inorganic source improves performance and antioxidant status of heat-distressed quail. Poultry Science 84: 882-887.CrossRefGoogle ScholarPubMed
AL-KIRKUKI, S.M.S. and ALI, K.A. (2012) Effect of force molting by zinc oxide and the role of vitamin C on body weight and reentry to production of broiler breeder. Mesoptamia Journal of Agriculture 40: 9-18.CrossRefGoogle Scholar
SHIPPEE, R.L., STAKE, P.E., KOEHN, U., LAMBERT, J.L. and SIMMONS, R.W. (1979) High dietary zinc or magnesium as forced-resting agents for laying hens. Poultry Science 58: 949-954.CrossRefGoogle Scholar
STAKE, P.E., FREDERICKSON, T.N., OKULICZ, W., SHIPPEE, R.L. and FOURNIER, D.J. (1979) Tamoxifen induced forced-rest/molt in laying hens. Poultry Science 58: 1111 (Abstr).Google Scholar
STEVENSON, M.H., JACKSON, N. and GIBSON, S.W. (1987) Withdrawal of zinc oxide containing diets from mature female domestic fowl: Effects on laying performance and the weights of selected tissues. British Poultry Science 28: 437-447.CrossRefGoogle ScholarPubMed
SUNDARESAN, N.R., ANISH, D., SASTRY, K.V.H., SAXENA, V.K., NAGARAJAN, K., SUBRAMANI, J., LEO, M.D.M., SHIT, N., MOHAN, J., SAXENA, M. and AHMED, K.A. (2008) High doses of dietary zinc induce cytokines, chemokines, and apoptosis in reproductive tissues during regression. Cell Tissue Research 332: 543-554.CrossRefGoogle ScholarPubMed
SUNDER, G.S., PANDA, A.K., GOPINATH, N.C.S., RAO, S.V.R., RAJU, M.V.L.N., REDDY, M.R. and KUMAR, C.V. (2008) Effects of higher levels of zinc supplementation on performance, mineral availability and immune competence in broiler chickens. Journal of Applied Poultry Research 17: 79-86.CrossRefGoogle Scholar
SWERDEL, M.R. and COUSINS, R.J. (1982) Induction of kidney metallothionein and metallothionein messenger RNA by zinc and cadmium. Journal of Nutrition 112: 801-809.CrossRefGoogle ScholarPubMed
TSE-DINH, Y.C. and BERAN-STEED, R.K. (1988) Escherichia coli DNA topoisomerase I is a zinc metalloprotein with three repetitive zinc-binding domains. Journal of Biological Chemistry 263: 15857-15859.CrossRefGoogle ScholarPubMed
UNDERWOOD, E.J.(1981) The mineral nutrition of livestock. 2nd ed. Commonwealth Agriculture Bureau, Slough, UK.Google Scholar
WASHABAUGH, M.W. and COLLINS, K.D. (1986) Dihydroorotase from Escherichia coli. Sulfhydryl group metal ion interactions . Journal of Biological Chemistry 261: 5920-5929.CrossRefGoogle ScholarPubMed
WIGHT, P.A., DEWAR, W.A. and SAUNDERSON, C.L. (1986) Zinc toxicity in the fowl: ultra structural pathology and relationship to selenium lead and copper. Avian Pathology 15: 23-38.CrossRefGoogle Scholar
WILSON, S.C. and CUNNINGHAM, F.J.(1980) Modification by metyrapone of open period for pre-ovulatory LH release in the hen. British Poultry Science 21: 351-361.CrossRefGoogle ScholarPubMed
WITZTUM, J.L. (1994) The oxidation hypothesis of atherosclerosis. Lancet 344: 793-795.CrossRefGoogle ScholarPubMed
YENICE, E., MIZRAK, C., GULTEKIN, M., ATIK, Z. and TUNCA, M. (2015) Effects of organic and inorganic forms of manganese, zinc, copper, and chromium on bioavailability of these minerals and calcium in late-phase laying hens. Biological Trace Element Research: DOI 10.1007/s12011-015-0313-8.CrossRefGoogle Scholar
YIN, X., WU, H., CHEN, Y. and KANG, Y.J. (1998) Induction of antioxidants by Adriamycin in mouse heart. Biochemical Pharmacology 56: 87-93.CrossRefGoogle ScholarPubMed