Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T05:47:49.086Z Has data issue: false hasContentIssue false

Dendritic cell harmonised immunity to poultry pathogens; a review

Published online by Cambridge University Press:  03 July 2017

Z.U. REHMAN
Affiliation:
Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China Faculty of Veterinary and Animal Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
S. UMAR
Affiliation:
Faculty of Veterinary and Animal Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
C. MENG
Affiliation:
Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
Z. ULLAH
Affiliation:
Department of Animal Sciences, University of Sargodha, Sargodha, Pakistan
F. RIAZ
Affiliation:
Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
S.U. REHMAN
Affiliation:
Faculty of Veterinary and Animal Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
C. DING*
Affiliation:
Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
*
Corresponding author: shoveldeen@shvri.ac.cn
Get access

Abstract

Dendritic cells (DCs) are antigen-presenting cells (APCs) with the unique ability to induce both innate immune responses and a highly specific acquired immunity. DCs are crucial to induce immunity, and their maturation and functions are influenced by microbial and environmental stimuli. Chicken DCs are composed of several subtypes including bursal secretory dendritic cells (BSDCs), follicular dendritic cells (FDCs), and thymic dendritic cells (TDCs). DC maturation depends on the nature of the perturbation and permits unique and efficient immune responses for each pathogen. DCs differentially recognise the viruses, bacteria, parasite and fungi and specifically regulate the immune response. Dendritic cells (DCs) are ‘nature's adjuvants’ and, as such represent an essential component of any vaccination strategy. The understanding of DC regulatory mechanisms opens a new horizon for the development of new vaccines and their targeting with the vaccination for elicitation of better immunity levels. The following review summarises the current state of knowledge of DCs and their specific functions during host pathogens interaction.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AKIRA, S., UEMATSU, S. and TAKEUCHI, O. (2006) Pathogen recognition and innate immunity. Cell 124: 783-801.CrossRefGoogle ScholarPubMed
APOSTOLOPOULOS, V., THALHAMMER, T., TZAKOS, A.G. and STOJANOVSKA, L. (2013) Targeting antigens to dendritic cell receptors for vaccine development. Journal of Drug Delivery 2013: Article ID 869718.CrossRefGoogle ScholarPubMed
BACCI, A., MONTAGNOLI, C., PERRUCCIO, K., BOZZA, S., GAZIANO, R., PITZURRA, L., VELARDI, A., D'OSTIANI, C.F., CUTLER, J.E. and ROMANI, L. (2002) Dendritic cells pulsed with fungal rna induce protective immunity to candida albicans in hematopoietic transplantation. Journal of Immunology 168: 2904-2913.CrossRefGoogle ScholarPubMed
BANCHEREAU, J. and STEINMAN, R.M. (1998) Dendritic cells and the control of immunity. Nature 392: 245-252.CrossRefGoogle ScholarPubMed
BIMCZOK, D., DOLL, S., RAU, H., GOYARTS, T., WUNDRACK, N., NAUMANN, M., DANICKE, S. and ROTHKOTTER, H.J. (2007) The fusarium toxin deoxynivalenol disrupts phenotype and function of monocyte-derived dendritic cells in vivo and in vitro. Immunobiology 212: 655-666.CrossRefGoogle ScholarPubMed
BOZZA, S., MONTAGNOLI, C., GAZIANO, R., ROSSI, G., NKWANYUO, G., BELLOCCHIO, S. and ROMANI, L. (2004) Dendritic cell-based vaccination against opportunistic fungi. Vaccine 22: 857-864.CrossRefGoogle ScholarPubMed
BOZZA, S., PERRUCCIO, K., MONTAGNOLI, C., GAZIANO, R., BELLOCCHIO, S., BURCHIELLI, E., NKWANYUO, G., PITZURRA, L., VELARDI, A. and ROMANI, L. (2003) A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood 102: 3807-3814.CrossRefGoogle ScholarPubMed
CHEONG, C., CHOI, J-H., VITALE, L., HE, L-Z., TRUMPFHELLER, C., BOZZACCO, L., DO, Y., NCHINDA, G., PARK, S.H. and DANDAMUDI, D.B. (2010) Improved cellular and humoral immune responses in vivo following targeting of hiv gag to dendritic cells within human anti–human dec205 monoclonal antibody. Blood 116: 3828-3838.CrossRefGoogle ScholarPubMed
DE GEUS, E.D., JANSEN, C.A. and VERVELDE, L. (2012) Uptake of particulate antigens in a nonmammalian lung: Phenotypic and functional characterization of avian respiratory phagocytes using bacterial or viral antigens. Journal of Immunology 188: 4516-4526.CrossRefGoogle ScholarPubMed
DE GEUS, E.D., TEFSEN, B., VAN HAARLEM, D.A., VAN EDEN, W., VAN DIE, I. and VERVELDE, L. (2013) Glycans from avian influenza virus are recognized by chicken dendritic cells and are targets for the humoral immune response in chicken. Molecular Immunology 56: 452-462.CrossRefGoogle ScholarPubMed
DE GEUS, E.D. and VERVELDE, L. (2013) Regulation of macrophage and dendritic cell function by pathogens and through immunomodulation in the avian mucosa. Developmental and Comparative Immunology 41: 341-351.CrossRefGoogle ScholarPubMed
DEL CACHO, E., GALLEGO, M., LEE, S.H., LILLEHOJ, H.S., QUILEZ, J., LILLEHOJ, E.P. and SANCHEZ-ACEDO, C. (2011) Induction of protective immunity against eimeria tenella infection using antigen-loaded dendritic cells (dc) and dc-derived exosomes. Vaccine 29: 3818-3825.CrossRefGoogle ScholarPubMed
DEL CACHO, E., GALLEGO, M., LEE, S.H., LILLEHOJ, H.S., QUILEZ, J., LILLEHOJ, E.P. and SÁNCHEZ-ACEDO, C. (2012) Induction of protective immunity against eimeria tenella, eimeria maxima, and eimeria acervulina infections using dendritic cell-derived exosomes. Infection and Immunity 80: 1909-1916.CrossRefGoogle ScholarPubMed
DEL CACHO, E., GALLEGO, M., LILLEHOJ, H.S., LÓPEZ-BERNARD, F. and SÁNCHEZ-ACEDO, C. (2009) Avian follicular and interdigitating dendritic cells: Isolation and morphologic, phenotypic, and functional analyses. Veterinary Immunology and Immunopathology 129: 66-75.CrossRefGoogle ScholarPubMed
DEL CACHO, E., GALLEGO, M., LILLEHOJ, H.S., QUILEZ, J., LILLEHOJ, E.P. and SANCHEZ-ACEDO, C. (2013) Tetraspanin-3 regulates protective immunity against eimeria tenella infection following immunization with dendritic cell-derived exosomes. Vaccine 31: 4668-4674.CrossRefGoogle ScholarPubMed
DEL CACHO, E., GALLEGO, M., LILLEHOJ, H.S., QUILEZ, J., LILLEHOJ, E.P. and SÁNCHEZ-ACEDO, C. (2016) Induction of protective immunity against experimental eimeria tenella infection using serum exosomes. Veterinary Parasitology 224: 1-6.CrossRefGoogle ScholarPubMed
DHAMA, K., CHAKRABORTY, S., VERMA, A.K., TIWARI, R., BARATHIDASAN, R., KUMAR, A. and SINGH, S.D. (2013) Fungal/mycotic diseases of poultry-diagnosis, treatment and control: A review. Pakistan Journal of Biological Sciences 16: 1626-1640.CrossRefGoogle ScholarPubMed
ESCRIVÁ, L., FONT, G. and MANYES, L. (2015) In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food and Chemical Toxicology 78: 185-206.CrossRefGoogle ScholarPubMed
FU, J., LIANG, J., KANG, H., LIN, J., YU, Q. and YANG, Q. (2014) The stimulatory effect of different cpg oligonucleotides on the maturation of chicken bone marrow-derived dendritic cells. Poultry Science 93: 63-69.CrossRefGoogle ScholarPubMed
HEMMI, H. and AKIRA, S. (2005) Tlr signalling and the function of dendritic cells. Chemical Immunology and Allergy 86: 120-135.CrossRefGoogle ScholarPubMed
HEO, M.B., CHO, M.Y. and LIM, Y.T. (2014) Polymer nanoparticles for enhanced immune response: Combined delivery of tumor antigen and small interference rna for immunosuppressive gene to dendritic cells. Acta Biomaterialia 10: 2169-2176.CrossRefGoogle ScholarPubMed
HONDA, K., SAKAGUCHI, S., NAKAJIMA, C., WATANABE, A., YANAI, H., MATSUMOTO, M., OHTEKI, T., KAISHO, T., TAKAOKA, A., AKIRA, S., SEYA, T. and TANIGUCHI, T. (2003) Selective contribution of ifn-α/β signaling to the maturation of dendritic cells induced by double-stranded rna or viral infection. Proceedings of the National Academy of Sciences 100: 10872-10877.CrossRefGoogle ScholarPubMed
IGYÁRTÓ, B.Z., LACKÓ, E., OLÁH, I. and MAGYAR, A. (2006) Characterization of chicken epidermal dendritic cells. Immunology 119: 278-288.CrossRefGoogle ScholarPubMed
JIANG, Y., HU, J., GUO, Y., YANG, W., YE, L., SHI, C., LIU, Y., YANG, G. and WANG, C. (2015) Construction and immunological evaluation of recombinant lactobacillus plantarum expressing hn of newcastle disease virus and dc- targeting peptide fusion protein. Journal of Biotechnology 216: 82-89.CrossRefGoogle ScholarPubMed
KALAIYARASU, S., KUMAR, M., SENTHIL KUMAR, D., BHATIA, S., DASH, S.K., BHAT, S., KHETAN, R.K. and NAGARAJAN, S. (2016) Highly pathogenic avian influenza h5n1 virus induces cytokine dysregulation with suppressed maturation of chicken monocyte-derived dendritic cells. Microbiology and Immunology 60: 687-693.CrossRefGoogle ScholarPubMed
KAMBLE, N.M., JAWALE, C.V. and LEE, J.H. (2016a) Activation of chicken bone marrow-derived dendritic cells induced by a salmonella enteritidis ghost vaccine candidate. Poultry Science 95: 2274-2280.CrossRefGoogle ScholarPubMed
KAMBLE, N.M., JAWALE, C.V. and LEE, J.H. (2016b) Interaction of a live attenuated salmonella gallinarum vaccine candidate with chicken bone marrow-derived dendritic cells. Avian Pathology 45: 235-243.CrossRefGoogle ScholarPubMed
LIANG, J., YIN, Y., QIN, T. and YANG, Q. (2015) Chicken bone marrow-derived dendritic cells maturation in response to infectious bursal disease virus. Veterinary Immunology and Immunopathology 164: 51-55.CrossRefGoogle ScholarPubMed
LIU, C-H., FAN, Y-T., DIAS, A., ESPER, L., CORN, R.A., BAFICA, A., MACHADO, F.S. and ALIBERTI, J. (2006) Cutting edge: Dendritic cells are essential for in vivo il-12 production and development of resistance against toxoplasma gondii infection in mice. The Journal of Immunology 177: 31-35.CrossRefGoogle ScholarPubMed
LIU, K. and NUSSENZWEIG, M.C. (2010) Origin and development of dendritic cells. Immunological Reviews 234: 45-54.CrossRefGoogle ScholarPubMed
MAHNKE, K., GUO, M., LEE, S., SEPULVEDA, H., SWAIN, S.L., NUSSENZWEIG, M. and STEINMAN, R.M. (2000) The dendritic cell receptor for endocytosis, dec-205, can recycle and enhance antigen presentation via major histocompatibility complex class ii–positive lysosomal compartments. The Journal of cell biology 151: 673-684.CrossRefGoogle ScholarPubMed
MARANGON, S., BUSANI, L. and CAPUA, I. (2007) Practicalities of the implementation of a vaccination campaign for avian influenza. Avian Diseases 51: 297-303.CrossRefGoogle ScholarPubMed
MATTSSON, J., YRLID, U., STENSSON, A., SCHÖN, K., KARLSSON, M.C.I., RAVETCH, J.V. and LYCKE, N.Y. (2011) Complement activation and complement receptors on follicular dendritic cells are critical for the function of a targeted adjuvant. Journal of Immunology 187: 3641-3652.CrossRefGoogle ScholarPubMed
MEHRZAD, J., DEVRIENDT, B., BAERT, K. and COX, E. (2014) Aflatoxin b(1) interferes with the antigen-presenting capacity of porcine dendritic cells. Toxicology In Vitro 28: 531-537.CrossRefGoogle ScholarPubMed
MEHRZAD, J., DEVRIENDT, B., BAERT, K. and COX, E. (2015) Aflatoxins of type b and g affect porcine dendritic cell maturation in vitro. Journal of Immunotoxicology 12: 174-180.CrossRefGoogle Scholar
MERAD, M., SATHE, P., HELFT, J., MILLER, J. and MORTHA, A. (2013) The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual Review of Immunology 31: 563-604.CrossRefGoogle ScholarPubMed
MOHAMMADI, A., MEHRZAD, J., MAHMOUDI, M. and SCHNEIDER, M. (2014) Environmentally relevant level of aflatoxin b1 dysregulates human dendritic cells through signaling on key toll-like receptors. International Journal of Toxicology 33: 175-186.CrossRefGoogle ScholarPubMed
NAGY, N., BÓDI, I. and OLÁH, I. (2016) Avian dendritic cells: Phenotype and ontogeny in lymphoid organs. Developmental and Comparative Immunology 58: 47-59.CrossRefGoogle ScholarPubMed
NEUMANN, A.K. and JACOBSON, K. (2010) A novel pseudopodial component of the dendritic cell anti-fungal response: The fungipod. PLoS Pathogens 6: e1000760.CrossRefGoogle ScholarPubMed
OLAH, I. and GLICK, B. (1979) Structure of the germinal centers in the chicken caecal tonsil: Light and electron microscopic and autoradiographic studies. Poultry Science 58: 195-210.CrossRefGoogle ScholarPubMed
QIAN, J., XU, X., DING, J., YIN, R., SUN, Y., XUE, C., DING, C., YU, S., LIU, X., HU, S., WANG, C., CONG, Y. and DING, Z. (2017) Newcastle disease virus-like particles induce dc maturation through tlr4/nf-κb pathway and facilitate dc migration by ccr7-ccl19/ccl21 axis. Veterinary Microbiology http://dx.doi.org/10.1016/j.vetmic.2017.03.002.CrossRefGoogle Scholar
QIN, T., YIN, Y., YU, Q. and YANG, Q. (2015) Bursopentin (bp5) protects dendritic cells from lipopolysaccharide-induced oxidative stress for immunosuppression. PLoS ONE 10: e0117477.Google ScholarPubMed
QUÉRÉ, P., PIERRE, J., HOANG, M.D., ESNAULT, E., DOMENECH, J., SIBILLE, P. and DIMIER-POISSON, I. (2013) Presence of dendritic cells in chicken spleen cell preparations and their functional interaction with the parasite toxoplasma gondii. Veterinary Immunology and Immunopathology 153: 57-69.CrossRefGoogle ScholarPubMed
RAJPUT, I.R., HUSSAIN, A., LI, Y.L., ZHANG, X., XU, X., LONG, M.Y., YOU, D.Y. and LI, W.F. (2014) Saccharomyces boulardii and bacillus subtilis b10 modulate tlrs mediated signaling to induce immunity by chicken bmdcs. Journal of Cellular Biochemistry 115: 189-198.CrossRefGoogle ScholarPubMed
REBEL, J.M., PEETERS, B., FIJTEN, H., POST, J., CORNELISSEN, J. and VERVELDE, L. (2011) Highly pathogenic or low pathogenic avian influenza virus subtype h7n1 infection in chicken lungs: Small differences in general acute responses. Veterinary Research 42: e10.CrossRefGoogle ScholarPubMed
REHMAN, Z.U., MENG, C., UMAR, S., MUNIR, M. and DING, C. (2016) Interaction of infectious bursal disease virus with the immune system of poultry. World's Poultry Science Journal 72: 805-820.CrossRefGoogle Scholar
RISSOAN, M.C., SOUMELIS, V., KADOWAKI, N., GROUARD, G., BRIERE, F., DE WAAL MALEFYT, R. and LIU, Y.J. (1999) Reciprocal control of t helper cell and dendritic cell differentiation. Science 283: 1183-1186.CrossRefGoogle ScholarPubMed
ROY, R.M. and KLEIN, B.S. (2012) Dendritic cells in antifungal immunity and vaccine design. Cell Host and Microbe 11: 436-446.CrossRefGoogle ScholarPubMed
SHRIMPTON, R.E., BUTLER, M., MOREL, A-S., EREN, E., HUE, S.S. and RITTER, M.A. (2009) Cd205 (dec-205): A recognition receptor for apoptotic and necrotic self. Molecular Immunology 46: 1229-1239.CrossRefGoogle ScholarPubMed
STAINES, K., YOUNG, J.R. and BUTTER, C. (2013) Expression of chicken dec205 reflects the unique structure and function of the avian immune system. PLoS ONE 8: e51799.CrossRefGoogle ScholarPubMed
STEINMAN, R.M. (1991) The dendritic cell system and its role in immunogenicity. Annual Review of Immunology 9: 271-296.CrossRefGoogle ScholarPubMed
STEINMAN, R.M. and COHN, Z.A. (1973) Identification of a novel cell type in peripheral lymphoid organs of mice i. Morphology, quantitation, tissue distribution. The Journal of experimental medicine 137: 1142-1162.CrossRefGoogle ScholarPubMed
UENO, H., KLECHEVSKY, E., MORITA, R., ASPORD, C., CAO, T., MATSUI, T., DI PUCCHIO, T., CONNOLLY, J., FAY, J.W., PASCUAL, V., PALUCKA, A.K. and BANCHEREAU, J. (2007) Dendritic cell subsets in health and disease. Immunological Reviews 219: 118-142.CrossRefGoogle ScholarPubMed
VAN GOOR, A., SLAWINSKA, A., SCHMIDT, C.J. and LAMONT, S.J. (2016) Distinct functional responses to stressors of bone marrow derived dendritic cells from diverse inbred chicken lines. Developmental and Comparative Immunology 63: 96-110.CrossRefGoogle ScholarPubMed
VERVELDE, L., REEMERS, S.S., VAN HAARLEM, D.A., POST, J., CLAASSEN, E., REBEL, J.M.J. and JANSEN, C.A. (2013) Chicken dendritic cells are susceptible to highly pathogenic avian influenza viruses which induce strong cytokine responses. Developmental and Comparative Immunology 39: 198-206.CrossRefGoogle ScholarPubMed
WAITHMAN, J. and MINTERN, J.D. (2012) Dendritic cells and influenza a virus infection. Virulence 3: 603-608.CrossRefGoogle ScholarPubMed
WU, Z. and KAISER, P. (2011) Antigen presenting cells in a non-mammalian model system, the chicken. Immunobiology 216: 1177-1183.CrossRefGoogle Scholar
WU, Z., ROTHWELL, L., YOUNG, J.R., KAUFMAN, J., BUTTER, C. and KAISER, P. (2010) Generation and characterization of chicken bone marrow-derived dendritic cells. Immunology 129: 133-145.CrossRefGoogle ScholarPubMed
YAO, S., WANG, S., ZHU, Y., LUO, L., ZHU, G., FLIES, S., XU, H., RUFF, W., BROADWATER, M. and CHOI, I-H. (2009) Pd-1 on dendritic cells impedes innate immunity against bacterial infection. Blood 113: 5811-5818.CrossRefGoogle ScholarPubMed
YASMIN, A.R., YEAP, S.K., TAN, S.W., HAIR-BEJO, M., FAKURAZI, S., KAISER, P. and OMAR, A.R. (2015) In vitro characterization of chicken bone marrow-derived dendritic cells following infection with very virulent infectious bursal disease virus. Avian Pathology 44: 452-462.CrossRefGoogle ScholarPubMed
ZHANG, L., LIU, R., MA, L., WANG, Y., PAN, B., CAI, J. and WANG, M. (2012) Eimeria tenella: Expression profiling of toll-like receptors and associated cytokines in the cecum of infected day-old and three-week old spf chickens. Experimental Parasitology 130: 442-448.CrossRefGoogle ScholarPubMed