Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:46:53.190Z Has data issue: false hasContentIssue false

Contributions and perspectives of chicken genomics in Brazil: from biological model to export commodity

Published online by Cambridge University Press:  08 February 2008

E.C. JORGE
Affiliation:
Universidade de São Paulo – Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Zootecnia, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
A. FIGUEIRA
Affiliation:
Universidade de São Paulo – Centro de Energia Nuclear na Agricultura, Av Centenário, 303, Piracicaba, SP, 13400-970, Brazil
M.C. LEDUR
Affiliation:
Embrapa Suínos e Aves, Genética e Melhoramento Animal, BR 153, Km 110, Vila Tamanduá, CP 21, Concórdia, SC, 89700-000, Brazil
A.S.A.M.T. MOURA
Affiliation:
Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia de Botucatu, Departamento de Produção e Exploração Animal Rubião Junior s/n Fazenda Lageado, CP 560, Botucatu, SP, 18618-000, Brazil
L.L. COUTINHO*
Affiliation:
Universidade de São Paulo – Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Zootecnia, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
*
*Corresponding author: llcoutin@esalq.usp.br
Get access

Abstract

Chicken is one of the most important sources of animal protein for human consumption, and breeding programmes have been responsible for constant improvements in production efficiency and product quality. Furthermore, chicken has largely contributed to fundamental discoveries in biology for the last 100 years. In this article we review recent developments in poultry genomics and their contribution to adding functional information to the already existing structural genomics, including the availability of the complete genome sequence, a comprehensive collection of mRNA sequences (ESTs), microarray platforms, and their use to complement QTL mapping strategies in the identification of genes that underlie complex traits. Efforts of the Brazilian Poultry Genomics Programme in this area resulted in generation of a resource population, which was used for identification of Quantitative Trait Loci (QTL) regions, generation of ESTs and candidate gene studies that contributed to furthering our understanding of the complex biological processes involved in growth and muscular development in chicken.

Type
Research Article
Copyright
Copyright © World's Poultry Science Association 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ABASHT, B., DEKKERS, J.C. and LAMONT, S.J. (2006) Review of quantitative trait loci identified in the chicken. Poultry Science 85: 2079–96.CrossRefGoogle Scholar
ABDRAKHMANOV, I., LODYGIN, D., GEROTH, P., ARAKAWA, H., LAW, A., PLACHY, J., KORN, B. and BUERSTEDDE, J.M. (2000) A large database of chicken bursal ESTs as a resource for the analysis of vertebrate gene function. Genome Research 10: 20622069.CrossRefGoogle Scholar
AFRAKHTE, M. and SCHULTHEISS, T.M. (2004) Construction and analysis of a subtracted library and microarray of cDNAs expressed specifically in chicken heart progenitor cells. Developmental Dynamics 230: 290298.CrossRefGoogle ScholarPubMed
AGARWAL, S.K., COGBURN, L.A. and BURNSIDE, J. (1994) Dysfunctional growth hormone receptor in a strain of sex-linked dwarf chicken: evidence for a mutation in the intracellular domain. The Journal of endocrinology 142: 427–34.CrossRefGoogle Scholar
ALVARES, L.E., SCHUBERT, F.R., THORPE, C., MOOTOOSAMY, R.C., CHENG, L., PARKYN, G., LUMSDEN, A. and DIETRICH, S. (2003) Intrinsic, Hox-dependent cues determine the fate of skeletal muscle precursors. Developmental Cell 5(3): 379–90.CrossRefGoogle ScholarPubMed
ANDERSSON, L. (2001) Genetic dissection of phenotypic diversity in farm animals. Nature Review Genetics 2: 130138.CrossRefGoogle ScholarPubMed
ANDERSSON, L. and GEORGES, M. (2004) Domestic-animal genomics: deciphering the genetics of complex traits. Nature Reviews Genetics 5: 202212.CrossRefGoogle ScholarPubMed
BLISS, T.W., DOHMS, J.E., EMARA, M.G. and KEELER, C.L. Jr. (2005) Gene expression profiling of avian macrophage activation. Veterinary Immunology and Immunopathology 105: 289299.CrossRefGoogle Scholar
BLOTT, S., KIM, J.J., MOISIO, S., SCHMIDT-KUNTZEL, A., CORNET, A., BERZI, P., CAMBISANO, N., FORD, C., GRISART, B., JOHNSON, D., KARIM, L., SIMON, P., SNELL, R., SPELMAN, R., WONG, J., VILKKI, J., GEORGES, M., FARNIR, F. and COPPIETERS, W. (2003) Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163: 253266.CrossRefGoogle Scholar
BOARDMAN, P.E., SANZ-EZQUERRO, J., OVERTON, I.M., BURT, D.W., BOSCH, E., FONG, W.T., TICKLE, C., BROWN, W.R., WILSON, S.A. and HUBBARD, S.J. (2002) A comprehensive collection of chicken cDNAs. Current Biology 12: 19651969.CrossRefGoogle ScholarPubMed
BOGYO, M. and CRAVATT, B.F. (2007) From genes to function: advances in applications of chemical and systems biology. Current Opinion in Chemical Biology 1: 13.CrossRefGoogle Scholar
BOTSTEIN, D., WHITE, R.L., SKOLNICK, M. and DAVIS, R.W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32: 314331.Google ScholarPubMed
BOURIKAS, D. and STOECKLI, E.T. (2003) New tools for gene manipulation in chicken embryos. Oligonucleotides 13: 411–9.CrossRefGoogle ScholarPubMed
BRAUN, T. and ARNOLD, H.H. (1995) Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO Journal 14: 11761186.CrossRefGoogle ScholarPubMed
BROWN, W.R., HUBBARD, S.J., TICKLE, C. and WILSON, S.A. (2003) The chicken as a model for large-scale analysis of vertebrate gene function. Nature Reviews Genetics 4: 8798.CrossRefGoogle Scholar
BUERSTEDDE, J.M. and TAKEDA, S. (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67: 179188.CrossRefGoogle Scholar
BURKE, W.H. and HENRY, M.H. (1997) Characteristics of the pectoralis superficialis and semimembranosus of broiler strain chickens, bantam chickens, and the reciprocal crosses. Poultry Science 76: 767773.CrossRefGoogle ScholarPubMed
BURNSIDE, J., NEIMAN, P., TANG, J., BASOM, R., TALBOT, R., ARONSZAJN, M., BURT, D. and DELROW, J. (2005) Development of a cDNA array for chicken gene expression analysis. BMC Genomics 6: 1323.CrossRefGoogle ScholarPubMed
BURT, D.W. (2002) Applications of biotechnology in the poultry industry. World's Poultry Science Journal 58: 513.CrossRefGoogle Scholar
BURT, D.W. (2005) Chicken genome: Current status and future opportunities. Genome Research 15: 1692–8.CrossRefGoogle ScholarPubMed
CARLBORG, O., KERJE, S., SCHUTZ, K., JACOBSSON, L., JENSEN, P. and ANDERSSON, L. (2003) A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Research 13: 413421.CrossRefGoogle ScholarPubMed
CARLBORG, O., JACOBSSON, L., AHGREN, P., SIEGEL, P. and ANDERSSON, L. (2006) Epistasis and the release of genetic variation during long-term selection. Nature Genetics 38: 418420.CrossRefGoogle ScholarPubMed
CASSMAN, M. (2005) Barriers to progress in systems biology. Nature 438: 1079.CrossRefGoogle ScholarPubMed
CHAMBERS, J.R., SMITH, E.J., DUNNINGTON, E.A. and SIEGEL, P.B. (1993) Sex-linked feathering (K, k+) in chickens: a review. Poultry Science Review 5: 97116.Google Scholar
CHRIST, B. and BRAND-SABERI, B. (2002) Limb muscle development. International Journal of Developmental Biology 46: 905914.Google ScholarPubMed
COLLINGS, F.S., BROOKS, L.D. and CHAKRAVARTI, A. (1998) A DNA polymorphism discovery resource for research on human genetics variation. Genome Research 8: 12291231.CrossRefGoogle Scholar
COUTINHO, L.L., MORRIS, J., MARKS, H.L., BUHR, R.J. and IVARIE, R. (1993) Delayed somite formation in a quail line exhibiting myofiber hyperplasia is accompanied by delayed expression of myogenic regulatory factors and myosin heavy chain. Development 117: 563569.CrossRefGoogle Scholar
DEKKERS, J.C.M. (2004) Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science 82 E-suppl: E313328.Google ScholarPubMed
DEKKERS, J.C.M. and HOSPITAL, F. (2002) The use of molecular genetics in the improvement of agricultural populations. Nature Reviews Genetics 3: 2232.CrossRefGoogle ScholarPubMed
DE KONING, D.J., WINDSOR, D., HOCKING, P.M., BURT, D.W., LAW, A., HALEY, C.S., MORRIS, A., VINCENT, J. and GRIFFIN, H. (2003) Quantitative locus detection in commercial broiler lines using candidate regions. Journal of Animal Science 81: 11581165.CrossRefGoogle ScholarPubMed
DE KONING, D.J., HALEY, C.S., WINDSOR, D., HOCKING, P.M., GRIFFIN, H., MORRIS, A., VINCENT, J. and BURT, D.W. (2004) Segregation of QTL for production traits in commercial meat-type chickens. Genetical Research 83: 211220.CrossRefGoogle ScholarPubMed
DE KONING, D.J. and HALEY, C.S. (2005) Genetical genomics in humans and model organisms. Trends in Genetics 21: 377–81.CrossRefGoogle ScholarPubMed
ETCHES, R.J. (2006) The hard cell(s) of avian transgenesis. Transgenic Research 15: 521526.CrossRefGoogle ScholarPubMed
GRISART, B., COPPIETERS, W., FARNIR, F., KARIM, L., FORD, C., BERZI, P., CAMBISANO, N., MNI, M., REID, S., SIMON, P., SPELMAN, R., GEORGES, M. and SNELL, R. (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research 12: 222231.CrossRefGoogle ScholarPubMed
HAMBURGER, V. and HAMILTON, H.L. (1951) A series of normal stages in the development of the chick embryo. Journal of Morphology 88: 4992.CrossRefGoogle ScholarPubMed
HARLIZIUS, B., VAN WIJK, R. and MERKS, J.W. (2004) Genomics for food safety and sustainable animal production. Journal of Biotechnology 113: 3342.CrossRefGoogle ScholarPubMed
HASTY, P., BRADLEY, A., MORRIS, J.H., EDMONDSON, D.G., VENUTI, J.M., OLSON, E.N. and KLEIN, W.H. (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364: 501506.CrossRefGoogle ScholarPubMed
HILL, W.G. (2005) A century of corn selection. Science 307: 683684.CrossRefGoogle ScholarPubMed
HILLIER, L.W., MILLER, W., BIRNEY, E., WARREN, W., HARDISON, R.C., PONTING, C.P., BORK, P., BURT, D.W., GROENEN, M.A., DELANY, M.E., DODGSON, J.B., CHINWALLA, A.T., CLIFTEN, P.F., CLIFTON, S.W., DELEHAUNTY, K.D., FRONICK, C., FULTON, R.S., GRAVES, T.A., KREMITZKI, C., LAYMAN, D., MAGRINI, V., MCPHERSON, J.D., MINER, T.L., MINX, P., NASH, W.E., NHAN, M.N., NELSON, J.O., ODDY, L.G., POHL, C.S., RANDALL-MAHER, J., SMITH, S.M., WALLIS, J.W., YANG, S.P., ROMANOV, M.N., RONDELLI, CM., PATON, B., SMITH, J., MORRICE, D., DANIELS, L., TEMPEST, H.G., ROBERTSON, L., MASABANDA, J.S., GRIFFIN, D.K., VIGNAL, A., FILLON, V., JACOBBSON, L., KERJE, S., ANDERSSON, L., CROOIJMANS, R.P., AERTS, J., VAN DER POEL, J.J., ELLEGREN, H., CALDWELL, R.B., HUBBARD, S.J., GRAFHAM, D.V., KIERZEK, A.M., MCLAREN, S.R., OVERTON, I.M., ARAKAWA, H., BEATTIE, K.J., BEZZUBOV, Y., BOARDMAN, P.E., BONFIELD, J.K., CRONING, M.D., DAVIES, R.M., FRANCIS, M.D., HUMPHRAY, S.J., SCOTT, C.E., TAYLOR, R.G., TICKLE, C., BROWN, W.R., ROGERS, J., BUERSTEDDE, J.M., WILSON, S.A., STUBBS, L., OVCHARENKO, I., GORDON, L., LUCAS, S., MILLER, M.M., INOKO, H., SHIINA, T., KAUFMAN, J., SALOMONSEN, J., SKJOEDT, K., WONG, G.K., WANG, J., LIU, B., WANG, J., YU, J., YANG, H., NEFEDOV, M., KORIABINE, M., DEJONG, P.J., GOODSTADT, L., WEBBER, C., DICKENS, N.J., LETUNIC, I., SUYAMA, M., TORRENTS, D., VON MERING, C., ZDOBNOV, E.M., MAKOVA, K., NEKRUTENKO, A., ELNITSKI, L., ESWARA, P., KING, D.C., YANG, S., TYEKUCHEVA, S., RADAKRISHNAN, A., HARRIS, R.S., CHIAROMONTE, F., TAYLOR, J., HE, J., RIJNKELS, M., GRIFFITHS-JONES, S., URETA-VIDAL, A., HOFFMAN, M.M., SEVERIN, J., SEARLE, S.M., LAW, A.S., SPEED, D., WADDINGTON, D., CHENG, Z., TUZUN, E., EICHLER, E., BAO, Z., FLICEK, P., SHTEYNBERG, D.D., BRENT, M.R., BYE, J.M., HUCKLE, E.J., CHATTERJI, S., DEWEY, C., PACHTER, L., KOURANOV, A., MOURELATOS, Z., HATZIGEORGIOU, A.G., PATERSON, A.H., IVARIE, R., BRANDSTROM, M., AXELSSON, E., BACKSTROM, N., BERLIN, S., WEBSTER, M.T., POURQUIE, O., REYMOND, A., UCLA, C., ANTONARAKIS, S.E., LONG, M., EMERSON, J.J., BETRAN, E., DUPANLOUP, I., KAESSMANN, H., HINRICHS, A.S., BEJERANO, G., FUREY, T.S., HARTE, R.A., RANEY, B., SIEPEL, A., KENT, W.J., HAUSSLER, D., EYRAS, E., CASTELO, R., ABRIL, J.F., CASTELLANO, S., CAMARA, F., PARRA, G., GUIGO, R., BOURQUE, G., TESLER, G., PEVZNER, P.A., SMIT, A., FULTON, L.A., MARDIS, E.R. and WILSON, R.K. (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695716.Google Scholar
HOCKING, P.M. (2005) Review of QTL mapping results in chickens. World's Poultry Science Journal 61: 215226.CrossRefGoogle Scholar
HUANG, X. and MADAN, A. (1999) CAP3: A DNA sequence assembly program. Genome Research 9: 868877.CrossRefGoogle ScholarPubMed
HUBBARD, S.J., GRAFHAM, D.V., BEATTIE, K.J., OVERTON, I.M., MCLAREN, S.R., CRONING, M.D., BOARDMAN, P.E., BONFIELD, J.K., BURNSIDE, J., DAVIES, R.M., FARRELL, E.R., FRANCIS, M.D., GRIFFITHS-JONES, S., HUMPHRAY, S.J., HYLAND, C, SCOTT, C.E., TANG, H., TAYLOR, R.G., TICKLE, C, BROWN, W.R., BIRNEY, E., ROGERS, J. and WILSON, S.A. (2005) Transcriptome analysis for the chicken based on 19,626 finished cDNA sequences and 485,337 expressed sequence tags. Genome Research 15: 174183.CrossRefGoogle Scholar
HUBNER, N., WALLACE, C.A., ZIMDAHL, H., PETRETTO, E., SCHULZ, H., MACIVER, F., MUELLER, M., HUMMEL, O., MONTI, J., ZIDEK, V, MUSILOVA, A., KREN, V, CAUSTON, H., GAME, L., BORN, G., SCHMIDT, S., MULLER, A., COOK, S.A., KURTZ, T.W., WHITTAKER, J., PRAVENEC, M. and AITMAN, T.J. (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genetics 37: 243–53.CrossRefGoogle ScholarPubMed
IKEOBI, CO., WOOLLIAMS, J.A., MORRICE, D.R., LAW, A., WINDSOR, D., BURT, D.W. and HOCKING, P.M. (2002) Quantitative trait loci affecting fatness in the chicken. Animal Genetics 33: 428–35.CrossRefGoogle ScholarPubMed
IKEOBI, C.O.N., WOOLLIAMS, J.A., MORRICE, D.R., LAW, A., WINDSOR, D., BURT, D.W. and HOCKING, P.M. (2004) Quantitative trait loci for meat yield and muscle distribution in a broiler layer cross. Livestock Production Science 87: 143151.CrossRefGoogle Scholar
IVARIE, R. (2003) Avian transgenesis: progress towards the promise. Trends in Biotechnology 21: 1419.CrossRefGoogle ScholarPubMed
JANSEN, R.C. and NAP, J.P. (2001) Genetical genomics: the added value from segregation. Trends in Genetics 17: 388–91.CrossRefGoogle Scholar
JEON, J.T., CARLBORG, O., TORNSTEN, A., GIUFFRA, E., AMARGER, V, CHARDON, P., ANDERSSON-EKLUND, L., ANDERSSON, K, HANSSON, I., LUNDSTROM, K. and ANDERSSON, L. (1999) A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genetics 21: 157158.CrossRefGoogle Scholar
JORGE, E.C., MONTEIRO-VITORELO, C.B., ALVES, H.J., SILVA, C.S., BALAN, R.G., PATRÍCIO, M. and COUTINHO, L.L. (2004) EST analysis of mRNA expressed during embryogenesis in Gallus gallus. The International Journal of Developmental Biology 48: 333337.CrossRefGoogle ScholarPubMed
KADARMIDEEN, H.N., VON ROHR, P. and JANSS, L.L. (2006) From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mammalian Genome 17: 548–64.CrossRefGoogle Scholar
KAUFMANN, J. (1999) Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrales? Immunogenetics 50: 228236.CrossRefGoogle Scholar
KITANO, H. (2002) Systems Biology: a brief overview. Science 295: 16621664.CrossRefGoogle ScholarPubMed
KRULL, C.E. (2004) A primer on using in ovo electroporation to analyze gene function. Developmental Dynamics 229: 433–9.CrossRefGoogle ScholarPubMed
LEDUR, M.C., ZANELLA, E.L., SCHMIDT, G.S., JAENISCH, F.R.F., SAATKAMP, M.G., BASSI, L.J. and COUTINHO, L.L. (2000a) Peso e caracter}sticas de carcaça em linhagens utilizadas no desenvolvimento de populações referência para detecção de QTL em aves. Revista Brasileira de Ciência Avícola 2 (Suppl. 2): 73.Google Scholar
LEDUR, M.C., ZANELLA, E.L., SCHMIDT, G.S., JAENISCH, F.R.F., SILVA, V S., VENTURA, L. and COUTINHO, L.L. (2000b) Divergence of Strains and Strain Crosses used to Develop New Reference Populations for QTL Studies in Poultry. Proceedings of the XXI World's Poultry Congress, Montreal, Canada.Google Scholar
LIPKIN, E., FULTON, J., CHENG, H., YONASH, N. and SOLLER, M. (2002) Quantitative trait locus mapping in chickens by selective DNA pooling with dinucleotide microsatellite markers by using purified DNA and fresh or frozen red blood cells as applied to marker-assisted selection. Poultry Science 81: 283–92.CrossRefGoogle ScholarPubMed
MCPHERRON, A.C., LAWLER, A.M. and LEE, S.J. (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 8390.CrossRefGoogle ScholarPubMed
MCPHERRON, A.C. and LEE, S.J. (1997) Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the United States of America 94: 1245712461.CrossRefGoogle ScholarPubMed
MEABURN, E., BUTCHER, L.M., LIU, L., FERNANDES, C., HANSEN, V., AL-CHALABI, A., PLOMIN, R., CRAIG, I., SCHALKWYK, L.C. (2005) Genotyping DNA pools on microarrays: tackling the QTL problem of large samples and large numbers of SNPs. BMC Genomics 6: 52.CrossRefGoogle Scholar
MORISSON, M., LEMIERE, A., BOSC, S., GALAN, M., PLISSON-PETIT, F., PINTON, P., DELCROS, C., FEVE, K., PITEL, F., FILLON, V., YERLE, M. and VIGNAL, A. (2002) ChickRH6: a chicken whole-genome radiation hybrid panel. Genetics, selection, evolution 34: 521533.CrossRefGoogle ScholarPubMed
MOSS, E.P. (1968) The relationship between the dimensions of the fibres and the number of nuclei during normal growth of skeletal muscle in domestic fowl. American Journal of Anatomy 122: 555564.CrossRefGoogle ScholarPubMed
NEIMAN, P.E., RUDDELL, A., JASONI, C., LORING, G., THOMAS, S.J., BRANDVOLD, K.A., LEE, R.M., BURNSIDE, J. and DELROW, J. (2001) Analysis of gene expression during myc oncogene-induced lymphomagenesis in the bursa of Fabricius. Proceedings of the National Academy of Sciences of the United States of America 98: 63786383.CrossRefGoogle ScholarPubMed
NEZER, C., MOREAU, L., BROUWERS, B., COPPIETERS, W., DETILLEUX, J., HANSET, R., KARIM, L., KVASZ, A., LEROY, P. and GEORGES, M. (1999) An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nature Genetics 21: 155156.CrossRefGoogle Scholar
NONES, K., LEDUR, M.C., RUY, D.C., BARON, E.E., MELO, CM., MOURA, A.S., ZANELLA, E.L., BURT, D.W. and COUTINHO, L.L. (2006) Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler x layer cross. Animal Genetics 37: 95100.CrossRefGoogle Scholar
PEKARIK, V., BOURIKAS, D., MIGLINO, N., JOSET, P., PREISWERK, S. and STOECKLI, E.T. (2003) Screening for gene function in chicken embryo using RNAi and electroporation. Nature Biotechnology 21: 93–6.CrossRefGoogle ScholarPubMed
REMIGNON, H., GARDAHAUT, M.F., MARCHE, G. and RICARD, F.H. (1995) Selection for rapid growth increases the number and the size of muscle fibres without changing their typing in chickens. Journal of Muscle Research and Cell Motility 16: 95102.CrossRefGoogle ScholarPubMed
REYNAUD, C.A., ANQUEZ, V., GRIMAL, H. and WEILL, J.C. (1987) A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 48: 379388.CrossRefGoogle ScholarPubMed
ROMANOV, M.N., SAZANOV, A.A. and SMIRNOV, A.F. (2004) First century of chicken gene study and mapping – a look back and forward. World's Poultry Science Journal 60: 1941.Google Scholar
RUDNICKI, M.A., SCHNEGELSBERG, P.N., STEAD, R.H., BRAUN, T., ARNOLD, H.H. and JAENISCH, R. (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75: 13511359.CrossRefGoogle ScholarPubMed
SCHADT, E.E., MONKS, S.A., DRAKE, T.A., LUSIS, A.J., CHE, N., COLINAYO, V., RUFF, T.G., MILLIGAN, S.B., LAMB, J.R., CAVET, G., LINSLEY, P.S., MAO, M., STOUGHTON, R.B. and FRIEND, S.H. (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297302.CrossRefGoogle ScholarPubMed
SCHEUERMANN, G.N., BILGILI, S.F., TUZUN, S. and MULVANEY, D.R. (2004) Comparison of chicken genotypes: myofiber number in pectoralis muscle and myostatin ontogeny. Poultry Science 83: 14041412.CrossRefGoogle Scholar
SCHMID, M., NANDA, I. and BURT, D. (2005) Second report on chicken genes and chromosomes 2005. Cytogenetic and Genome Research 109: 415479.CrossRefGoogle Scholar
SCHMUTZ, J. and GRIMWOOD, J. (2004) Fowl Sequence. Nature 432: 679680.CrossRefGoogle Scholar
SEWALEM, A., MORRICE, D.M., LAW, A., WINDSOR, D., HALEY, C.S., IKEOBI, C.O.N., BURT, D.W. and HOCKING, P.M. (2002) Mapping quantitative trait loci for body weight at three, six and nine weeks of age in a broiler layer cross. Poultry Science 81: 17751781.CrossRefGoogle Scholar
SIEGEL, P.B., DODGSON, J.B. and ANDERSSON, L. (2006) Progress from chicken genetics to the chicken genome. Poultry Science 85: 20502060.CrossRefGoogle Scholar
SMITH, J., SPEED, D., HOCKING, P.M., TALBOT, R.T., DEGEN, W.G., SCHIJNS, V.E., GLASS, E.J. and BURT, D.W. (2006) Development of a chicken 5K microarray targeted towards immune function. BMC Genomics 7: 4959.CrossRefGoogle ScholarPubMed
SOLLER, M., WEIGEND, S., ROMANOV, M.N., DEKKERS, J.C. and LAMONT, S.J. (2006) Strategies to assess structural variation in the chicken genome and its associations with biodiversity and biological performance. Poultry Science 85: 2061–78.CrossRefGoogle ScholarPubMed
SOUZA, E.M. and MICHELAN FILHO, T. (2004) Genética avícola. In: MENDES, A.A.; NÄÄS, I.A.; MACARI, M. (Ed). Produção de frangos de corte. FACTA, cap. 2: 2335.Google Scholar
SRIVASTAVA, R. and VARNER, J. (2007) Emerging technologies: systems biology. Biotechnology Progress 23: 2427.CrossRefGoogle ScholarPubMed
TAJBAKHSH, S., BOBER, E., BABINET, C., POURNIN, S., ARNOLD, H.H. and BUCKINGHAM, M. (1996) Gene targeting the myf-5 locus with nlacZ reveals expression of this myogenic factor in mature skeletal muscle fibres as well as early embryonic muscle. Developmental Dynamics 206: 291300.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
TATSUDA, K. and FUJINAKA, K. (2001) Genetic mapping of the QTL affecting body weight in chickens using a F-2 family. British Poultry Science 42: 333337.CrossRefGoogle Scholar
TAUTZ, D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research 17: 64636471.CrossRefGoogle ScholarPubMed
TESSERAUD, S., CHAGNEAU, A.M. and GRIZARD, J. (2000) Muscle protein turnover during early development in chickens divergently selected for growth rate. Poultry Science 79: 14651471.CrossRefGoogle Scholar
TRAAS, A.M., CASAL, M., HASKINS, M. and HENTHORN, P. (2006) Genetic counseling in the era of molecular diagnostics. Theriogenology 66: 599605.CrossRefGoogle ScholarPubMed
TUISKULA-HAAVISTO, M., HONKATUKIA, M., VILKKI, J., DE KONING, D.J., SCHULMAN, N.F. and MAKI-TANILA, A. (2002) Mapping of quantitative trait loci affecting quality and production traits in egg layers. Poultry Science 81: 919–27.CrossRefGoogle ScholarPubMed
UBA (2005/2006) Annual Report. União Brasileira de Avicultura. Brazil (Internet site: http://www.uba.org.br/ubanews_files/rel_uba_2005_06.pdf).Google Scholar
VALLEJO, R.L., BACON, L.D., LIU, H.C., WITTER, R.L., GROENEN, M.A.M., HILLEL, J. and CHENG, H.H. (1998) Genetic mapping of quantitative trait loci affecting susceptibility to Marek's disease virus induced tumors in F-2 intercross chickens. Genetics 148: 349360.CrossRefGoogle Scholar
VAN DE LAVOIR, M.C., DIAMOND, J.H., LEIGHTON, P.A., MATHER-LOVE, C., HEYER, B.S., BRADSHAW, R., KERCHNER, A., HOOI, L.T., GESSARO, T.M., SWANBERG, S.E., DELANY, M.E. and ETCHES, R.J. (2006) Germline transmission of genetically modified primordial germ cells. Nature 441: 766–9.CrossRefGoogle ScholarPubMed
VAN LAERE, A.S., NGUYEN, M., BRAUNSCHWEIG, M., NEZER, C., COLLETTE, C., MOREAU, L., ARCHIBALD, A.L., HALEY, C.S., BUYS, N., TALLY, M., ANDERSSON, G., GEORGES, M. and ANDERSSON, L. (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425: 832836.CrossRefGoogle Scholar
VAN HEMERT, S., EBBELAAR, B.H., SMITS, M.A. and REBEL, J.M. (2003) Generation of EST and microarray resources for functional genomic studies on chicken intestinal health. Animal Biotechnology 14: 133143.CrossRefGoogle ScholarPubMed
VAN KAAM, J.B.C.H.M., VAN ARENDONK, J.A.M., GROENEN, M.A.M., BOVENHUIS, H., VEREIJKEN, A.L.J., CROOIJMANS, R.P.M.A., VAN DER POEL, J.J. and VEENENDAAL, A. (1998) Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design. Livestock Production Science 54: 133150.CrossRefGoogle Scholar
VAN KAAM, J.B.C.H.M., GROENEN, M.A.M., BOVENHUIS, H., VEENENDAAL, A., VEREIJKEN, A.L.J. and VAN ARENDONK, J.A.M. (1999) Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency. Poultry Science 78: 1523.CrossRefGoogle ScholarPubMed
WARDECKA, B., OLSZEWSKI, R., JASZCZAK, K., ZIEBA, G., PIERZCHALA, M. and WICINSKA, K. (2002) Relationship between microsatellite marker alleles on chromosomes 1–5 originating from the Rhode Island Red and Green-legged Partrigenous breeds and egg production and quality traits in F(2) mapping population. Journal of Applied Genetics 43: 319329.Google ScholarPubMed
WONG, G.K., LIU, B., WANG, J., ZHANG, Y., YANG, X., ZHANG, Z., MENG, Q., ZHOU, J., LI, D., ZHANG, J., NI, P., LI, S., RAN, L., LI, H., ZHANG, J., LI, R., LI, S., ZHENG, H., LIN, W., LI, G., WANG, X., ZHAO, W., LI, J., YE, C., DAI, M., RUAN, J., ZHOU, Y., LI, Y., HE, X., ZHANG, Y., WANG, J., HUANG, X., TONG, W., CHEN, J., YE, J., CHEN, C., WEI, N., LI, G., DONG, L., LAN, F., SUN, Y., ZHANG, Z., YANG, Z., YU, Y., HUANG, Y., HE, D., XI, Y., WEI, D., QI, Q., LI, W., SHI, J., WANG, M., XIE, F., WANG, J., ZHANG, X., WANG, P., ZHAO, Y., LI, N., YANG, N., DONG, W., HU, S., ZENG, C., ZHENG, W., HAO, B., HILLIER, L.W., YANG, S.P., WARREN, W.C., WILSON, R.K., BRANDSTROM, M., ELLEGREN, H., CROOIJMANS, R.P., VAN DER POEL, J.J., BOVENHUIS, H., GROENEN, M.A., OVCHARENKO, I., GORDON, L., STUBBS, L., LUCAS, S., GLAVINA, T., AERTS, A., KAISER, P., ROTHWELL, L., YOUNG, J.R., ROGERS, S., WALKER, B.A., VAN HATEREN, A., KAUFMAN, J., BUMSTEAD, N., LAMONT, S.J., ZHOU, H., HOCKING, P.M., MORRICE, D., DE KONING, D.J., LAW, A., BARTLEY, N., BURT, D.W., HUNT, H., CHENG, H.H., GUNNARSSON, U., WAHLBERG, P., ANDERSSON, L., KINDLUND, E., TAMMI, M.T., ANDERSSON, B., WEBBER, C., PONTING, C.P., OVERTON, I.M., BOARDMAN, P.E., TANG, H., HUBBARD, S.J., WILSON, S.A., YU, J., WANG, J. and YANG, H. (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432: 717722.Google ScholarPubMed
YE, X., BROWN, S.R., NONES, K., COUTINHO, L.L., DEKKERS, J.C. and LAMONT, S.J. (2007) Associations of myostatin gene polymorphisms with performance and mortality traits in broiler chickens. Genetics, selection, evolution 39: 7389.CrossRefGoogle ScholarPubMed
YONASH, N., BACON, L.D., WITTER, R.L. and CHENG, H.H. (1999) High resolution mapping and identification of new quantitative trait loci (QTL) affecting susceptibility to Marek's disease. Animal Genetics 30: 126135.CrossRefGoogle ScholarPubMed