Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T15:54:19.933Z Has data issue: false hasContentIssue false

Campylobacter control strategies in European poultry production

Published online by Cambridge University Press:  01 March 2011

F. PASQUALI*
Affiliation:
Department of Food Science, Alma Mater Studiorum, University of Bologna, Bologna, Italy
A. DE CESARE
Affiliation:
Department of Food Science, Alma Mater Studiorum, University of Bologna, Bologna, Italy
G. MANFREDA
Affiliation:
Department of Food Science, Alma Mater Studiorum, University of Bologna, Bologna, Italy
a. FRANCHINI
Affiliation:
Department of Food Science, Alma Mater Studiorum, University of Bologna, Bologna, Italy
*
Corresponding author: Frederique.pasquali3@unibo.it
Get access

Abstract

In 2008 as in previous four years, campylobacteriosis was the most frequently reported zoonotic disease in humans in the European Union (EU) with fresh poultry meat as one of the most important reservoir of human infection (EFSA, 2010a). The reduction of campylobacter prevalence and load in live poultry is believed to be one of the most effective ways of reducing the contamination of foodstuffs and the number of human campylobacter cases. On this purpose some European Member States adopted national campylobacter control or monitoring programs but a European strategy to reduce campylobacter is still missing. The first step in this direction has been a European Union-wide baseline survey carried out in 2008 at slaughterhouses to obtain comparable values of prevalence of campylobacter in broiler batches and on broiler carcasses for all Member States. Current pre-harvest strategies available to reduce campylobacter contamination in poultry production include the application of on-farm biosecurity measures, the decontamination of litter, and the supplementation of feed with compounds inhibiting campylobacter and the treatment of drinking water. Moreover, novel strategies, specifically targeting campylobacter control at pre-harvest level, are in progress, including administration of probiotics, vaccination, antibiotics used in combination with molecule able to prevent the emergence of antibiotic resistance and antimicrobial alternatives (i.e. bacteriophages, bacteriocins). This paper is an overview on pre-harvest control strategies.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ALLEN, V.M., WEAVER, H., RIDLEY, A.M., HARRIS, J.A., SHARMA, M., EMERY, J., SPARKS, N., LEWIS, M. and EDGE, S. (2008) Sources and spread of thermophilic Campylobacter spp. during partial depopulation of broiler chicken flocks. Journal of Food Protection 71: 264-270.Google Scholar
ALLOS, B.M. (1997) Association between Campylobacter infection and Guillain-Barré syndrome. Journal of Infectious Diseases 176 Suppl 2:S125-128.CrossRefGoogle ScholarPubMed
BLONDEAU, J.M., HANSEN, G., METZLER, K. and HEDLING, P. (2004) The role of PK/PD parameters to avoid selection and increase of resistance: mutant prevention concentration. Journal of Chemotherapy 3: 1-19.Google Scholar
BOUWKNEGT, M., VAN DE GIESSEN, A.W., DAM-DEISZ, W.D.C., HAVELAAR, A.H., NAGELKERKE, N.J.D. and HENKEN, A.M. (2003) Risk factors for the presence of Campylobacter spp. in Dutch broiler flocks. Preventive Veterinary Medicine 62: 35-49.Google Scholar
BRENNHOVD, O., KAPPERUD, G. and LANGELAND, G. (1992) Survey of thermotolerant Campylobacter spp. and Yersinia spp. in three surface water sources in Norway. International Journal of Food Microbiology 15: 327-338.Google Scholar
BUCKLEY, A.M., WANG, J., HUDSON, D.L., GRANT, A.J., JONES, M.A., MASKELL, D.J. and STEVENS, M.P. (2010) Evaluation of live-attenuated Salmonella vaccines expressing Campylobacter antigens for control of C. jejuni in poultry. Vaccine 28: 1094-1105.Google Scholar
BYRD, J.A., HARGIS, B.M., CALDWELL, D.J., BAILEY, R.H., HERRON, K.L., MCREYNOLDS, J.L., BREWER, R.L., ANDERSON, R.C., BISCHOFF, K.M., CALLAWAY T.R., and KUBENA, L.F. (2001) Effect of lactic acid administration in the drinking water during pre-slaughter feed withdrawal on Salmonella and Campylobacter contamination of broilers. Poultry Science 80: 278-283.CrossRefGoogle Scholar
CAGLIERO, C., MOULINE, C., PAYOT, S. and CLOECKAERT, A. (2005) Involvement of the CmeABC efflux pump in the macrolide resistance of Campylobacter coli. Journal of Antimicrobial Chemotherapy 56: 948-950.CrossRefGoogle ScholarPubMed
CALLICOTT, K.A., HARÐARDÓTTIR, H., GEORGSSON, F., REIERSEN, J., FRIÐRIKSDÓTTIR, V., GUNNARSSON, E., MICHEL, P., BISAILLON, J., KRISTINSSON, K.G., BRIEM, H., HIETT, K.L., NEEDLEMAN, D.S. and STERN, N.J. (2008) Broiler Campylobacter contamination and human campylobacteriosis in Iceland. Applied and Environmental Microbiology 74: 6483-6494.Google Scholar
CARDINALE, E., TALL, F., GUÈYE, E.F., CISSE, M. and SALVAT, G. (2004) Risk factors for Campylobacter spp. infection in Senegalese broiler-chicken flocks. Preventive Veterinary Medicine 64: 15-25.Google Scholar
CARRILLO, C.L., ATTERBURY, R.J., EL-SHIBINY, A., CONNERTON, P.L., DILLON, E., SCOTT, A. and CONNERTON, I.F. (2005) Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Applied and Environmental Microbiology 71: 6554-6563.Google Scholar
CARVALHO, C., SUSANO, M., FERNANDES, E., SANTOS, S., GANNON, B., NICOLAU, A., GIBBS, P., TEIXEIRA, P. and AZEREDO, J. (2010) Method for bacteriophage isolation against target Campylobacter strains. Letters in Applied Microbiology 50: 192-197.Google Scholar
CHAVEERACH, P., KEUZENKAMP, D.A., LIPMAN, L.J. and VAN KNAPEN, F. (2004) Effect of organic acids in drinking water for young broilers on Campylobacter infection, volatile fatty acid production, gut microflora and histological cell changes. Poultry Science 83: 330-334.Google Scholar
COM (COMMUNITY MEASURES) NO COM/99/0719 White paper on food safety of 12 January 2000. http://europa.eu/legislation_summaries/other/l32041_en.htm and last accessed 14 June 2010.Google Scholar
DIRECTIVE NO 2003/99/EC of 17 November 2003 on the monitoring of zoonoses, zoonotic agents, amending Council Decision 90/424/EEC repealing Council Directive 92/117/EEC. (OJ L 325, 12.12.2003 and pp. 31-40).Google Scholar
EC (COMMISSION DECISION) NO 2007/516/EC of 19 July 2007 concerning a financial contribution from the Community towards a survey on the prevalence, antimicrobial resistance of Campylobacter spp. in broiler flocks, on the prevalence of Campylobacter spp., Salmonella spp. in broiler carcasses to be carried out in the Member States. (OJ L 190, 21.7.2007 and pp. 25-37).Google Scholar
EC (COUNCIL DIRECTIVE) NO 1999/74/EC of 19 July 1999 laying down minimum standards for the protection of laying hens. (OJ No. L 203, 03. 08. 1999 and p. 53).Google Scholar
EC (REGULATION) NO 178/2002 of 28 January2002 laying down the general principles, requirements of food law, establishing the European Food Safety Authority, laying down procedures in matters of food safety. (OJ L 31, 1.2.2002 and pp. 1-24).Google Scholar
EC (REGULATION) NO 1831/2003 Community Register of Feed Additives Edition 62 Appendixes 3 & 4 and Annex: List of additives - 15.10.09.Google Scholar
EC (REGULATION) NO 1831/2003 of 22 September 2003 on additives for use in animal nutrition (OJ L 268, 18.10.2003 and pp. 29-43).Google Scholar
ECKERT, R., HE, J., YARBROUGH, D.K., QI, F., ANDERSON, M.H. and SHI, W. (2006) Targeted killing of Streptococcus mutans by a pheromone-guided "smart" antimicrobial peptide. Antimicrobial Agents and Chemotherapy 50: 3651-3657.CrossRefGoogle Scholar
EUROPEAN FOOD SAFETY AUTHORITY AND EUROPEAN CENTRE FOR DISEASE PREVENTION AND CONTROL, (2010a) The Community Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Foodborne Outbreaks in the European Union in 2008, The EFSA Journal, 1496.CrossRefGoogle Scholar
EUROPEAN FOOD SAFETY AUTHORITY, (2010b) Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008, Part A: Campylobacter and Salmonella prevalence estimates. The EFSA Journal 8: 1503.Google Scholar
EUROPEAN FOOD SAFETY AUTHORITY, (2010c) Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008, Part B: Analysis of factors associated with Campylobacter colonisation of broiler batches and with Campylobacter contamination of broiler carcasses; and investigation of the culture method diagnostic characteristics used to analyse broiler carcass samples. The EFSA Journal 8 (8): 1522.Google Scholar
EUROPEAN FOOD SAFETY AUTHORITY, (2010d) Scientific Opinion on Quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. The EFSA Journal 8: 1437.Google Scholar
EUROPEAN FOOD SAFETY AUTHORITY, (2004) Opinion of the Scientific Panel on Biological Hazards on the requests from the Commission related to the use of vaccines for the control of Salmonella in poultry The EFSA Journal 114: 1-74.Google Scholar
EVANS, S.J. and SAYERS, A.R. (2000) A longitudinal study of Campylobacter infection of broiler flocks in Great Britain. Preventive Veterinary Medicine 46: 209-223.Google Scholar
FRANÇOIS, A., ETERADOSSI, N., DELMAS, B., PAYET, V. and LANGLOIS, P. (2001) Construction of avian adenovirus Celo recombinant in cosmids. Journal of Virology 75: 5288-5301.Google Scholar
FRANZMAN, M.R., BURNELL, K.K., DEHKORDI-VAKIL, F.H., GUTHMILLER, J.M., DAWSON, D.V. and BROGDEN, K.A. (2009) Targeted antimicrobial activity of a specific IgG-SMAP28 conjugate against Porphyromonas gingivalis in a mixed culture. International Journal of Antimicrobial Agents 33: 14-20.Google Scholar
FRASER, R.W., WILLIAMS, N.T., POWELL, L.F. and COOK, A.J. (2010) Reducing Campylobacter and Salmonella infection: two studies of the economic cost and attitude to adoption of on-farm biosecurity measures. Zoonoses Public Health 57: e109-e115..Google Scholar
GARRIDO, M.N., SKJERVHEIM, M., OPPEGAARD, H. and SORUM, H. (2004) Acidified litter benefits the intestinal flora balance of broiler chickens. Applied and. Environmental Microbiology 70: 5208-5213.CrossRefGoogle ScholarPubMed
GIBBENS, J.C., PASCOE, S.J., EVANS, S.J., DAVIES, R.H. and SAYERS, A.R. (2001) A trial of biosecurity as a means to control Campylobacter infection of broiler chickens. Preventive Veterinary Medicine 48: 85-99.Google Scholar
GREGORY, E., BARNHART, H., DREESEN, D.W., STERN, N.J. and CORN, J.L. (1997) Epidemiological study of Campylobacter spp. in broilers: Source, time of colonization, and prevalence. Avian Diseases 41: 890-898.Google Scholar
HALD, B., SOMMER, H.M. and SKOVGÅRD, H. (2007) Use of fly screens to reduce Campylobacter spp. introduction in broiler houses. Emerging Infectious Diseases 13: 1951-1953.CrossRefGoogle ScholarPubMed
HALD, B., RATTENBORG, E. and MADSEN, M. (2001) Role of batch depletion of broiler houses on the occurrence of Campylobacter spp. in chicken flocks. Letters in Applied Microbiology 32: 253-256.Google Scholar
HALD, B., WEDDERKOPP, A. and MADSEN, M. (2000) Thermophilic Campylobacter spp. in Danish broiler production: a cross-sectional survey and a retrospective analysis of risk factors for occurrence in broiler flocks. Avian Pathology 29: 123-131CrossRefGoogle Scholar
HANSSON, I., FORSHELL, L.P., GUSTAFSSON, P., BOQVIST, S., LINDBLAD, J., ENGVALL, E.O., ANDERSSON, Y. and VÅGSHOLM, I. (2007) Summary of the Swedish Campylobacter program in broilers, 2001 through 2005. Journal of Food Protection 70: 2008-2014.Google Scholar
HAVELAAR, A.H., MANGEN, M.J., DE KOEIJER, A.A., BOGAARDT, M.J., EVERS, E.G., JACOBS-REITSMA, W.F., VAN PELT, W., WAGENAAR, J.A., DE WIT, G.A., VAN DER ZEE, H. and NAUTA, M.J. (2007) Effectiveness and efficiency of controlling Campylobacter on broiler chicken meat. Risk Analysis 27: 831-844.Google Scholar
HEUER, O.E., PEDERSEN, K., ANDERSEN, J.S. and MADSEN, M. (2001) Prevalence and antimicrobial susceptibility of thermophilic Campylobacter in organic and conventional broiler flocks. Letters in Applied Microbiology 33: 269-274.CrossRefGoogle ScholarPubMed
HOFSHAGEN, M. and KRUSE, H. (2005) Reduction in flock prevalence of Campylobacter spp. in broilers in Norway after implementation of an action plan. Journal of Food Protection 68: 2220-2223.Google Scholar
HUE, O., LE BOUQUIN, S., LAISNEY, M., ALLAIN, V., LALANDE, F., PETETIN, I., ROUXEL, S., QUESNE, S., GLOAGUEN, P.-Y., PICHEROT, M., SANTOLINI, J., SALVAT, G., BOUGEARD, S. and CHEMALY, M. (2010) Prevalence of and risk factors for campylobacter spp. contamination of broiler chicken carcasses at the slaughterhouse. Food Microbiology 27: 992-999, doi: 10.1016/j.fm.2010.06.004.Google Scholar
HUMPHREY, T.J., HENLEY, A. and LANNING, D.G. (1993) The colonization of broiler chickens with Campylobacter jejuni: Some epidemiological investigations. Epidemiology and Infection 110: 601-607.CrossRefGoogle ScholarPubMed
HWANG, S., YUN, J., KIM, K.P., HEU, S., LEE, S. and RYU, S. (2009) Isolation and characterization of bacteriophages specific for Campylobacter jejuni. Microbiology and Immunology 53: 559-566.Google Scholar
IVANOV, I.E. (2001) Treatment of broiler litter with organic acids. Research in Veterinary Science 70: 169-173.Google Scholar
KAPPERUD, G., SKJERVE, E., VIK, L., HAUGE, K., LYSAKER, A., AALMEN, I., OSTROFF, S.M. and POTTER, M. (1993) Epidemiological investigation of risk factors for Campylobacter colonization in Norwegian broiler flocks. Epidemiology and Infection 111: 245-255.Google Scholar
LIN, J. (2009) Novel Approaches for Campylobacter Control in Poultry. Foodborne Pathogens and Disease 6: 755-765.Google Scholar
LIN, J. and MARTINEZ, A. (2006) Effect of efflux pump inhibitors on bile resistance and in vivo colonization of Campylobacter jejuni. Journal of Antimicrobial Chemotherapy 58: 966-972.Google Scholar
LINE, J.E. (2002) Campylobacter and Salmonella populations associated with chickens raised on acidified litter. Poultry Science 81: 1473-1477.Google Scholar
LINE, J.E., SVETOCH, E.A., ERUSLANOV, B.V., PERELYGIN, V.V., MITSEVICH, E.V., MITSEVICH, I.P., LEVCHUK, V.P., SVETOCH, O.E., SEAL, B.S., SIRAGUSA, G.R. and STERN, N.J. (2008) Isolation and purification of enterocin E-760 with broad antimicrobial activity against gram-positive and gram-negative bacteria. Antimicrobial Agents and Chemotherapy 52: 1094-1100.CrossRefGoogle ScholarPubMed
MARTINEZ, A. and LIN, J. (2006) Effect of an efflux pump inhibitor on the function of the multidrug efflux pumpCmeABC and antimicrobial resistance in Campylobacter. Foodborne Pathogens and Disease 3: 393-402.Google Scholar
MEAD, G.C. (2000) Review: Prospects for 'competitive exclusion' treatment to control salmonellae and other foodborne pathogens in poultry. Veterinary Journal 159: 111-123.Google Scholar
MORISHITA, T.Y., AYE, P.P., HARR, B.S., COBB, C.W. and CLIFFORD, J.R. (1997) Evaluation of an avian-specific probiotic to reduce the colonization and shedding of Campylobacter jejuni in broilers. Avian Diseases 41: 850-855.CrossRefGoogle ScholarPubMed
MORRIS, R.D. and LEVIN, R. (1995) Estimating the incidence of waterborne infectious disease related to drinking water in the United States, in: REICHARD, E.G. & ZAPPONI, G.A. (Eds) Assessing and Managing Health Risks from Drinking Water Contamination: Approaches and Applications. International Association of Hydrological Sciences, Vol. 233, pp. 75-88 (Wallingford, UK, IAHS Publication).Google Scholar
NÄTHER, G., ALTER, T., MARTIN, A. and ELLERBROEK, L. (2009) Analysis of risk factors for Campylobacter species infection in broiler flocks. Poultry Science 88: 1299-1305.Google Scholar
NEILL, S.D., CAMPBELL, J.N. and O'BRIEN, J.J. (1985) Egg penetration by Campylobacter jejuni. Avian Pathology 14: 313-320.Google Scholar
NEWELL, D.G. (2009) Vaccination of chickens against Campylobacter as a potential intervention approach to reduce campylobacteriosis. Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO), Niigata, Japan. p. 44.Google Scholar
NURMI, E. and RANTALA, M. (1973) New aspects of Salmonella infection in broiler production. Nature 241: 210-211.CrossRefGoogle ScholarPubMed
OLKKOLA, S., JUNTUNEN, P., HEISKA, H., HYYTIÄINEN, H. and HÄNNINEN, M.L. (2010) Mutations in the rpsL Gene are Involved in Streptomycin Resistance in Campylobacter coli. Microbial Drug Resistance 16: 105-110.Google Scholar
PASQUALI, F., LUCCHI, A. and MANFREDA, G. (2008) Mutant prevention concentration of ciprofloxacin, enrofloxacin and nalidixic acid against Campylobacter jejuni. International Journal of Antimicrobial Agents 31: 500-502.Google Scholar
PATTERSON, J.A. and BURKHOLDER, K.M. (2003) Application of prebiotics and probiotics in poultry production. Poultry Science 82: 627-631.Google Scholar
PEARSON, A.D., GREENWOOD, M., HEALING, T.D., ROLLINS, D., SHAHAMAT, M., DONALDSON, J. and COLWELL, R.R. (1993) Colonization of broiler chickens by waterborne Campylobacter jejuni. Applied and Environmental Microbiology 59: 987-996.Google Scholar
PIDDOCK, L.J.V., GRIGGS, D., JOHNSON, M.M., RICCI, V., ELVISS, N.C., WILLIAMS, L.K., JØRGENSEN, F., CHISHOLM, S.A., LAWSON, A.J., SWIFT, C., HUMPHREY, T.J. and OWEN, R.J. (2008) Persistence of Campylobacter species, strain types, antibiotic resistance and mechanisms of tetracycline resistance in poultry flocks treated with chlortetracycline. Journal of Antimicrobial Chemotherapy 62: 303-315.Google Scholar
PIVNICK, H. and NURMI, E. (1982) The Nurmi concept and its role in the control of Salmonella in poultry, in: DAVIES, R. (Ed.) Developments in Food Microbiology - 1, pp. 41-70 (Barking, Applied Science Publishers).Google Scholar
QIU, X.Q., WANG, H., LU, X.F., ZHANG, J., LI, S.F., CHENG, G., WAN, L., YANG, L., ZUO, J.Y., ZHOU, Y.Q., WANG, H.Y., CHENG, X., ZHANG, S.H., OU, Z.R., ZHONG, Z.C., CHENG, J.Q., LI, Y.P. and WU, G.Y. (2003) An engineered multidomain bactericidal peptide as a model for targeted antibiotics against specific bacteria. Nature Biotechnology 21: 1480-1485.Google Scholar
QIU, X.Q., ZHANG, J., WANG, H. and WU, G.Y. (2005) A novel engineered peptide, a narrow-spectrum antibiotic, is effective against vancomycin-resistant Enterococcus faecalis. Antimicrobial Agents and Chemotherapy 49: 1184-1189.Google Scholar
RAUW, F., LAMBRECHT, B., FRANÇOIS, A., LANGLOIS, P. and VAN DEN BERG, T. (2007) Kinetic and biologic properties of recombinant ChIFN-γ expressed via Celo virus vectors. Journal of Interferon and Cytokine Research 27: 111-118.Google Scholar
REFRÉGIER-PETTON, J., ROSE, N., DENIS, M. and SALVAT, G. (2001) Risk factors for Campylobacter spp. contamination in French broiler chicken flocks at the end of the rearing period. Preventive Veterinary Medicine 50: 89-100.Google Scholar
RILEY, M.A. and WERTZ, J.E. (2002) Bacteriocins: evolution, ecology, and application. Annual Review of Microbiology 56: 117-137.Google Scholar
ROSENFIELD, J.A., ARNOLD, G.J., DAVEY, G.R., ARCHER, R.S. and WOODS, W.H. (1985) Serotyping of Campylobacter jejuni from an outbreak of enteritis implicating chicken. Journal of Infection 11: 159-165.Google Scholar
ROSENQUIST, H., BOYSEN, L., GALLIANO, C., NORDENTOFT, S., ETHELBERG, S. and BORCK, B. (2009) Danish strategies to control Campylobacter in broilers and broiler meat: facts and effects. Epidemiology and Infection 137: 1742-1750.Google Scholar
ROSENQUIST, H., NIELSEN, N.L., SOMMER, H.M., NORRUNG, B. and CHRISTENSEN, B.B. (2003) Quantitative risk assessment of human Campylobacteriosis associated with thermophilic Campylobacter species in chickens. International Journal of Food Microbiology 83: 87-103.Google Scholar
ROTHROCK, M.J. JR, COOK, K.L., WARREN, J.G. and SISTANI, K. (2008) The effect of alum addition on microbial communities in poultry litter. Poultry Science 87: 1493-1503.CrossRefGoogle ScholarPubMed
SAHIN, O., KOBALKA, P. and ZHANG, Q. (2003) Detection and survival of Campylobacter in chicken eggs. Journal of Applied Microbiology 95: 1070-1079.Google Scholar
SCHNEITZ, C. and MEAD, G. (2002) Competitive exclusion in Salmonella in Domestic Animals, in: WRAY, C. & WRAY, A. (Eds) Salmonella in Domestic Animals, pp. 301-322 (New York, CABI publishing).Google Scholar
SCOTT, A.E., TIMMS, A.R., CONNERTON, P.L., CARRILLO, C.L., RADZUM, K.A. and CONNERTON, I.F. (2007a) Genome dynamics of C. jejuni in response to bacteriophage predation. Plos Pathogens 3: 1142-1151.Google Scholar
SCOTT, A.E., TIMMS, A.R., CONNERTON, P.L., EL-SHIBINY, A. and CONNERTON, I.F. (2007b) Bacteriophage influence C. jejuni types populating broiler chickens. Environmental Microbiology 9: 2341-2353.Google Scholar
SNELLING, W.J., MCKENNA, J.P., LECKY, D.M. and DOOLEY, J.S. (2005) Survival of Campylobacter jejuni in waterborne protozoa. Applied and Environmental Microbiology 71: 5560-5571.Google Scholar
SOLIS DE LOS SANTOS, F., DONOGHUE, A.M., VENKITANARAYANAN, K., REYES-HERRERA, I., METCALF, J.H., DIRAIN, M.L., AGUIAR, V.F., BLORE, P.J. and DONOGHUE, D.J. (2008) Therapeutic supplementation of caprylic acid in feed reduces Campylobacter jejuni colonization in broiler chicks. Applied and Environmental Microbiology 74: 4564-4566.Google Scholar
SOLIS DE LOS SANTOS, F., DONOGHUE, A.M., VENKITANARAYANAN, K., METCALF, J.H., REYES-HERRERA, I., DIRAIN, M.L., AGUIAR, V.F., BLORE, P.J. and DONOGHUE, D.J. (2009) The natural feed additive caprylic acid decreases Campylobacter jejuni colonization in market-aged broiler chickens. Poultry Science 88: 61-64.CrossRefGoogle ScholarPubMed
STERN, N.J., HIETT, K.L., ALFREDSSON, G.A., KRISTINSSON, K.G., REIERSEN, J., HARDARDOTTIR, H., BRIEM, H., GUNNARSSON, E., GEORGSSON, F., LOWMAN, R., BERNDTSON, E., LAMMERDING, A.M., PAOLI, G.M. and MUSGROVE, M.T. (2003) Campylobacter spp. in Icelandic poultry operations and human disease. Epidemiology and Infection 130: 23-32.Google Scholar
STERN, N.J., SVETOCH, E.A., ERUSLANOV, B.V., PERELYGIN, V.V., MITSEVICH, E.V., MITSEVICH, I.P., POKHILENKO, V.D., LEVCHUK, V.P., SVETOCH, O.E. and SEAL, B.S. (2006) Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrobial Agents and Chemotherapy 50: 3111-3116.Google Scholar
TEN VELDHUIS, J.A., CLEMENS, F.H., STERK, G. and BERENDS, B.R. (2010) Microbial risks associated with exposure to pathogens in contaminated urban flood water. Water Research 44: 2910-2918.Google Scholar
THORMAR, H., HILMARSSON, H. and BERGSSON, G. (2006) Stable concentrated emulsions of the 1-monoglyceride of capric acid (monocaprin) with microbicidal activities against the food-borne bacteria Campylobacter jejuni, Salmonella spp., and Escherichia coli. Applied and Environmental Microbiology 75: 522-526.Google Scholar
VAN DE GIESSEN, A.W., TILBURG, J.J.H.C., RITMEESTER, W.S. and VAN DER PLAS., J. (1998) Reduction of Campylobacter infections in broiler flocks by application of hygiene measures. Epidemiology and Infection 121: 57-66.Google Scholar
VAN DER ZEE, H., WIT, B. and VOLLEMA, A.R. (2005) Survey pathogenen en bateriële resistentie in kipproducten uit biologische teelt, Jaar 2004. Voedsel en Waren Autoriteit/Keuringsdienst van Waren Oost, p. 10.Google Scholar
VAN LIEVERLOO, J.H., BLOKKER, E.J. and MEDEMA, G. (2007) Quantitative microbial risk assessment of distributed drinking water using faecal indicator incidence and concentrations. Journal of Water and Health 5: 131-149.Google Scholar
VICENTE, J.L., HIGGINS, S.E., HARGIS, B.M. and TELLEZ, G. (2007) Effect of Poultry Guard litter amendment on horizontal transmission of Salmonella enteritidis in broiler chicks. International Journal of Poultry Science 6: 314-317.Google Scholar
WAGENAAR, J.A., MEVIUS, D.J. and HAVELAAR, A.H. (2006) Campylobacter in primary animal production and control strategies to reduce the burden of human campylobacteriosis. Revue scientifique et technique de l'Office International des Epizooties 25: 581-594.Google Scholar
WAGENAAR, J.A., VAN BERGEN, M.A., MUELLER, M.A., WASSENAAR, T.M. and CARLTON, R.M. (2005) Phage therapy reduces Campylobacter jejuni colonization in broilers. Veterinary Microbiology 109: 275-283.Google Scholar
WANG, L., ZHANG, Y., ZHANG, Y., YAOJIE, and LI, Y. (2010) Mutant prevention concentrations of fluoroquinolones against Campylobacter jejuni isolated from chicken. Veterinary Microbiology 144: 409-414.Google Scholar
WYSZYNSKA, A., RACZKO, A., LIS, M. and JAGUSZTYN-KRYNICKA, E.K. (2004) Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz=92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine 22: 1379-1389.Google Scholar