Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T03:59:31.305Z Has data issue: false hasContentIssue false

Yield Loss and Management of Volunteer Corn in Soybean

Published online by Cambridge University Press:  20 January 2017

Jill Alms
Affiliation:
Plant Science Department, South Dakota State University, Brookings, SD 57007
Michael Moechnig
Affiliation:
Field Scientist, Toronto, SD 57268
David Vos
Affiliation:
Plant Science Department, South Dakota State University, Brookings, SD 57007
Sharon A. Clay*
Affiliation:
Plant Science Department, South Dakota State University, Brookings, SD 57007
*
Corresponding author's E-mail: Sharon.clay@sdstate.edu.

Abstract

Volunteer corn is often overlooked as a weed in soybean. To aid in management decisions, this study determined soybean yield loss attributed to volunteer corn and efficacy of various herbicides at several rates and timings. A hyperbolic equation estimated (R2 = 0.88) incremental yield loss (I) of 39.7% at low density when maximum yield loss (A) was constrained to 71%, the highest yield loss observed in these trials, revealing a more competitive plant than many common midwestern weedy species. Clethodim applied at 51 g ai ha−1 at V4 soybean resulted in > 90% volunteer corn control with < 5% soybean yield loss, whereas if applied at 12.7 g ai ha−1 volunteer corn control was 15%, but soybean yield was 50% greater than the nontreated control. On the basis of these data, the partial volunteer corn control improved soybean yield. Timing of glufosinate application influenced volunteer corn control. Glufosinate applied to 15-cm-tall corn resulted in 33% control, whereas applications to 36- to 91-cm corn resulted in > 70% control. Glufosinate combined with grass herbicides improved control to > 85%, with concomitant yield increases. Results demonstrated that volunteer corn substantially reduced soybean yield at low densities and yield increased when volunteer corn was controlled with various herbicides. On the basis of these results, and current soybean grain and herbicide prices, soybean yield gains from volunteer corn control could increase net return by > $150 ha−1.

El maíz voluntario es frecuentemente ignorado como una maleza en campos de soja. Para ayudar a la toma de decisiones de manejo, este estudio determinó la pérdida de rendimiento atribuida al maíz voluntario y la eficacia de varios herbicidas a varias dosis y momentos de aplicación. Una ecuación hiperbólica estimó (R2 = 0.88) pérdidas de rendimiento incrementales (I) de 39.7% a densidades bajas cuando la pérdida máxima de rendimiento se limitó a 71%, la cual fue la pérdida de rendimiento más alta observada en estos ensayos, lo que reveló que el maíz voluntario es una planta más competitiva que muchas especies de malezas comúnmente observadas en el medio oeste. Clethodim aplicado a 51 g ai ha−1 durante el estadio V4 de la soja resultó en >90% de control de maíz voluntario con <5% de pérdidas en el rendimiento de la soja, mientras que si se aplicó a 12.7 g ai ha−1 el control del maíz voluntario fue 15%, pero el rendimiento de la soja fue 50% mayor que el de control sin tratamiento. Con base en estos datos, el control parcial del maíz voluntario mejoró el rendimiento de la soja. El momento de aplicación de glufosinate influyó en el control del maíz voluntario. Glufosinate aplicado a plantas de maíz de 15 cm de altura resultó en 33% de control, mientras que aplicaciones a maíz de 36 a 91 cm de altura resultó en >70% de control. Glufosinate combinado con herbicidas para gramíneas mejoraron el control a >85%, con incrementos concomitantes de rendimiento. Los resultados demostraron que el maíz voluntario redujo sustancialmente el rendimiento de la soja a bajas densidades y el rendimiento incrementó cuando el maíz voluntario fue controlado con varios herbicidas. Con base en estos resultados y los precios actuales de grano de soja y de herbicidas, las ganancias en el rendimiento de la soja producto del control del maíz voluntario pudo incrementar la rentabilidad neta en >$150 ha−1.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Aaron Hager, University of Illinois.

References

Literature Cited

Andersen, RN (1976) Control of volunteer corn and giant foxtail in soybeans. Weed Sci 24:253256 Google Scholar
Andersen, RN, Ford, JH, Lueschen, WE (1982) Controlling volunteer corn (Zea mays) in soybeans (Glycine max) with diclofop and glyphosate. Weed Sci 30:132136 Google Scholar
Barrentine, WL (1974) Common cocklebur competition in soybeans. Weed Sci 22:600603 Google Scholar
Beckett, TH, Stoller, EW (1988) Volunteer corn (Zea mays) interference in soybeans (Glycine max). Weed Sci 36:159166 Google Scholar
Bensch, CN, Horak, MJ, Peterson, D (2003) Interference of redroot pigweed (Amaranthus retroflexus), palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci 51:3743 Google Scholar
Brust, GE, House, GJ (1988) Weed seed destruction by arthropods and rodents in low-input soybean agroecosystems. Am J Altern Agric 3:1925 Google Scholar
Buhler, DD, Hartzler, RG, Forcella, F (1997) Implications of weed seedbank dynamics to weed management. Weed Sci 45:329336 Google Scholar
Burke, IC, Askew, SD, Corbett, JL, Wilcut, JW (2005) Glufosinate antagonizes clethodim control of goosegrass (Eleusine indica). Weed Technol 19:664668 Google Scholar
Clay, DE, Carlson, CG, Clay, SA, Murrell, TS (2012) Using iteration to develop predictive equations for polynomial, Mitscherlich, hyperbolic, and logistic models. Chapter 20 in Mathematics and Calculations for Agronomists and Soil Scientists. Norcross, GA: IPNI Google Scholar
Clay, SA, Clay, DE, Horvath, DP, Pullis, J, Carlson, CG, Hansen, S, Reicks, G (2009) Corn response to competition: growth alteration vs. yield limiting factors. Agron J 101:15221529 Google Scholar
Cousens, R (1985) An empirical model relating crop yield to weed and crop density and a statistical comparison with other models. J Agric Sci 105:513521 Google Scholar
Currie, RS, Murray, D, Fenderson, J (2007) Timing of clethodim, glufosinate or paraquat tank mixes for control of volunteer corn. in WSWS Proceedings, Volume 60. Las Cruces, NM: Western Society of Weed Science Google Scholar
Deen, W, Hamill, A, Shropshire, C, Soltani, N, Sikkema, PH (2006) Control of volunteer glyphosate-resistant corn (Zea mays) in glyphosate-resistent soybean (Glycine max). Weed Technol 20:261266 Google Scholar
Fellows, GM, Roeth, FW (1992) Shattercane (Sorghum bicolor) interference in soybean (Glycine max). Weed Sci 33:203208 Google Scholar
Harrison, SK, Williams, CS, Wax, LM (1985) Interference and control of giant foxtail (Setaria faberia) in soybeans (Glycine max). Weed Sci 33:203208 Google Scholar
Jhala, A, Wright, B, Chahal, P (2014) Volunteer Corn in Soybean: Impact and Management. https://cropwatch.unl.edu/archive/-/asset_publisher/VHeSpfv0Agju/content/volunteer-corn-in-soybean-impact-and-management. Accessed September 30, 2015Google Scholar
Johnson, PO, Deneke, DL, Vos, D, Alms, J, Wrage, LJ, Szczepaniec, A, Bachmann, A, Tilmon, K, Byamukama, E, Ruden, K (2015) South Dakota Pest Management Guide. Soybeans. http://igrow.org/up/resources/03-3032-2014.pdf Accessed April 16, 2015Google Scholar
Lee, S, Clay, DE, Clay, SA (2014) Impact of herbicide tolerant crops on soil health and sustainable agriculture crop production. Pages 211236 in Songstad, DD, Hatfield, JL, Tomes, DT, eds. Convergence of Food Security, Energy Security, and Sustainable Agriculture. Biotechnology in Agriculture and Forestry 67. Berlin, Germany: Springer-Verlag Google Scholar
Marquardt, P, Krupke, C, Johnson, WG (2012) Competition of transgenic volunteer corn with soybean and the effect on western corn rootworm emergence. Weed Sci 60:193198 Google Scholar
Marquardt, PT, Johnson, WG (2013) Influence of clethodim application timing on control of volunteer corn in soybean. Weed Technol 27:645648 Google Scholar
Owen, MDK, Zelaya, IA (2005) Herbicide-resistant crops and weed resistance to herbicides. Pest Manag Sci 61:301311 Google Scholar
Ritchie, SD, Hanway, JJ, Lupkes, SJ (1997) How a Corn Plant Develops. Special Report No 48. Iowa: State Univ Sci Technol CES Ames. http://www.agronext.iastate.edu/corn/production/management/growth/. Accessed August 3, 2015Google Scholar
Shauck, TC, Page, CF, Earlywine, DT, Kelinsorge, DL, Smeda, RJ (2010) Corn (Zea mays) harvest inefficiencies and potential for volunteer corn. in Proceedings of the North Central Weed Science Society. Volume 65. Las Cruces, NM: North Central Weed Science Society Google Scholar
Steckel, GJ, Hart, SE, Wax, LM (1997) Absorption and translocation of glufosinate on four weed species. Weed Sci 45:378381 Google Scholar
[USDA/NASS] U.S. Department of Agriculture National Agricultural Statistics Service (2013) Sioux Falls, SD:South Dakota Agriculture Field Office Bulletin No 73Google Scholar
Vail, GD, Oliver, LR (1993) Barnyardgrass (Echinochloa crus-galli) interference in soybeans (Glycine max). Weed Technol 7:220225 Google Scholar
Weaver, SE (2001) Impact of lamb's-quarters, common ragweed and green foxtail on yield of corn and soybean in Ontario. Can J Plant Sci 81:321828 Google Scholar
Young, BG, Hart, SE (1997) Control of volunteer sethoxydim-resistant corn (Zea mays) in soybean (Glycine max). Weed Technol 11:649655 Google Scholar
Zimdahl, RL (2004) Weed–Crop Competition A Review. 2nd edn. Ames, IA: Blackwell. 220 pGoogle Scholar