Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T17:53:30.076Z Has data issue: false hasContentIssue false

Weed Hosts of Root-Knot Nematodes and Their Distribution in Fiji

Published online by Cambridge University Press:  20 January 2017

Sunil K. Singh
Affiliation:
School of Biological and Chemical Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Private Bag, Suva, Fiji
Uma R. Khurma*
Affiliation:
School of Biological and Chemical Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Private Bag, Suva, Fiji
Peter J. Lockhart
Affiliation:
Institute of Molecular Biosciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
*
Corresponding author's E-mail: khurmau@gmail.com.

Abstract

Weeds can act as reservoir hosts of a range of pests and diseases. Information and knowledge on the host status of weeds to common pests and diseases can be used to develop integrated weed and pest management strategies. As part of a survey on the distribution and diversity of root-knot nematodes on crops in Fiji, the root-knot nematode host status of weeds was also studied. Weeds growing in root-knot nematode infested farms (n = 189) and bioassay pot soil samples (n = 277) were identified, and their host status was determined on the basis of a root gall and egg-mass index scale from 0 to 5. A total of 45 weed species were recorded as potential weed hosts of root-knot nematodes with a gall index from 1 to 5. Using the weed and tomato bioassay method, a total of 11 nonhost weed species were recorded with a gall index of 0, relative to infected tomato growing in pot soil samples. Common weeds infected by root-knot nematodes on farms and in bioassay pot soil included slender amaranth, old world diamond-flower, tropic ageratum, sicklepod, mimbra, balsamapple, purple bushbean, little ironweed, ivy gourd, and cutleaf groundcherry. The presence of egg masses on the weed hosts indicated their ability to sustain root-knot nematode populations and, thus, their potential to act as reservoir hosts.

Las malezas pueden actuar como hospederas de una amplia variedad de plagas y enfermedades. La información y los conocimientos acerca de la manera en que las malezas pueden ser hospederas de las plagas y enfermedades comunes pueden utilizarse para desarrollar estrategias integradas del manejo de éstas mismas. Como parte de una encuesta acerca de la distribución y diversidad de los nemátodos del género Meloidogyne en cultivos producidos en Fiji, también se estudio el grado en que las malezas funcionan como hospederas de dichos organismos. Se identificaron malezas que crecen en granjas infestadas con Meloidogyne (n = 189) y en muestras de ensayo de tierra de macetas (n = 277) y su estatus de hospederas fue determinado en base a los nódulos radiculares y a la masa de huevecillos presente en una escala de 0 a 5. Un total de 45 especies de maleza fueron identificadas como hospederas potenciales de Meloidogynes con un índice de nódulos radiculares de 1 a 5, usando el método de bio-ensayo en malezas y tomate, un total de 11 especies de malezas no hospederas se registraron con un índice de nódulos de 0, en relación al tomate infectado que crecía en las muestras de tierra de macetas. Las malezas comunes infectadas con Meloidogynes en granjas y en muestras de suelo de macetas, incluyeron Amaranthus viridus L., Oldenlandia corymbosa L.; Ageratum conyzoides L.; Senna obtusifolia (L.) H.S. Irwin & Barneby; Ludwigia hyssopifolia (G.Don) Excell apud A. R. Fernandes; Momordica charantia L.; Macroptilium atropurpureum (Moc. & Sesse ex DC.) Urb.; Cyanthillium cinereum (L.) H. Rob.; Coccinia grandis (L.) J. Voigt y Physalis angulata L. La presencia de masas de huevecillos en las malezas hospedaras indica su habilidad para mantener poblaciones de Meloidogynes y por lo tanto, su potencial para actuar como hospederas.

Type
Special Topics
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abad, P., Favery, B., Rosso, M-N., and Castagnone-Sereno, P. 2003. Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol. Plant Pathol. 4:217224.CrossRefGoogle ScholarPubMed
Bélair, G. and Benoit, D. L. 1996. Host suitability of 32 common weeds to Meloidogyne hapla in organic soils of southwestern Quebec. J. Nematol. (Suppl.) 28:643647.Google Scholar
Bendixen, L. E., Reynolds, D. A., and Riedel, R. M. 1979. Annotated bibliography of weeds as reservoirs for organisms affecting crops, 1: nematodes. Ohio Agric. Res. Dev. Cent. Res. Bull. 133.Google Scholar
Bird, D. and Kaloshian, I. 2003. Are roots special? nematodes have their say. Physiol. Mol. Plant Pathol. 62:115123.Google Scholar
Dabaj, K. H. and Jenser, G. 1990. Some weed host-plants of the northern root-knot nematode Meloidogyne hapla in Hungary. Nematol. Medit. 18:139140.Google Scholar
Davis, R. F. and Webster, T. M. 2005. Relative host status of selected weeds and crops for Meloidogyne incognita and Rotylenchulus reniformis . J. Cotton Sci. 9:4146.Google Scholar
Davis, R. F., Webster, T. M., and Brenneman, T. B. 2006. Host status of tropical spiderwort (Commelina benghalensis) for nematodes. Weed Sci. 54:11371141.Google Scholar
Desaeger, J. and Rao, M. R. 2000. Parasitic nematode populations in natural fallows and improved cover crops and their effects on subsequent crops in Kenya. Field Crops Res. 65:4156.Google Scholar
Ehwaeti, M. E., Fargette, M., Phillips, M. S., and Trudgill, D. L. 1999. Host status differences and their relevance to damage by Meloidogyne incognita . Nematology 1:421432.CrossRefGoogle Scholar
Fiji Islands Bureau of Statistics 2008. Fiji Facts and Figures as of 1 July 2008. http://www.statsfiji.gov.fj. Accessed: April 20, 2009.Google Scholar
Haseeb, A. and Pandey, R. 1995. Additions to the host records of root-knot nematodes among the medicinal and aromatic plants. Nematol. Medit. 23:211212.Google Scholar
Kaur, R., Brito, J. A., and Rich, J. R. 2007. Host suitability of selected weed species to five Meloidogyne species. Nematropica 37:107120.Google Scholar
Khurma, U. R., Deo, R. R., and Singh, S. K. 2008. Incidence of root-knot nematodes (Meloidogyne spp.) in Fiji: a preliminary investigation. S. Pac. J. Nat. Sci. 26:8587.Google Scholar
Meng, Q. P., Long, H., and Xu, J. H. 2004. PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. javanica and M. arenaria . Acta Phytopathol. Sin. 34:204210.Google Scholar
Parham, J. W. 1958. The Weeds of Fiji. Suva, Fiji: Department of Agriculture Bulletin 35, Government Press. 196 p.Google Scholar
[PIER] Pacific Island Ecosystems at Risk, U.S. Forest Service 2009. Plant Threats to Pacific Ecosystems. http://www.hear.org/Pier. Accessed: September 15, 2009.Google Scholar
Powell, W. M. 2001. Plant susceptibility to major nematodes in Georgia. The University of Georgia, College of Agricultural and Environmental Sciences, Cooperative Extension Service Bulletin 904. 12 p.Google Scholar
Rich, J. R., Brito, J. A., Kaur, R., and Ferrell, J. A. 2009. Weed species as hosts of Meloidogyne: a review. Nematorpica 39:157185.Google Scholar
Schroeder, J., Thomas, S., and Murray, L. W. 1993. Yellow and purple nutsedge and Chile peppers host southern root knot nematode. Weed Sci. 41:150156.CrossRefGoogle Scholar
Seemann, B. C. and Fitch, W. H. 1865. Flora vitiensis: a description of the plants of the Viti or Fiji Islands, with an account of their history, uses, and properties. London: L. Reeve. 453 p.CrossRefGoogle Scholar
Sharma, J. and Rich, J. R. 2005. Host status of woody ornamental plants native to Southeastern USA to three Meloidogyne species. Nematropica 35:2330.Google Scholar
Shepherd, R. L. 1979. A quantitative technique for evaluating cotton for root-knot nematode resistance. Phytopathology 69:427430.CrossRefGoogle Scholar
Smith, A. C. 1979. Flora Vitiensis Nova: A New Flora of Fiji. Lawai, Kauai, HI: National Tropical Botanical Garden.Google Scholar
Taylor, A. L. and Sasser, J. N. 1978. Biology, identification and control of root-knot nematodes (Meloidogyne species). Raleigh, NC: North Carolina State University Graphics. 111 p.Google Scholar
Tedford, E. C. and Fortnum, B. A. 1988. Weed hosts of Meloidogyne arenaria and M. incognita common in tobacco fields in South Carolina. Ann. Appl. Nematol. 2:102105.Google Scholar
Thomas, S. H., Schroeder, J., and Murray, L. W. 2005. The role of weeds in nematode management. Weed Sci. 53:00923928.CrossRefGoogle Scholar
[USDA] U.S. Department of Agriculture 2009. Natural Resource Conservation Service PLANTS Database. http://plants.usda.gov/. Accessed: September 15, 2009.Google Scholar
Whistler, A. W. 1995. Wayside Plants of the Islands: A Guide to the Lowland Flora of the Pacific Islands—Hawai'i, Samoa, Tonga, Tahiti, Fiji, Guam, Belau. Honolulu, HI: University of Hawaii Press. 202 p.Google Scholar
[WSSA] Weed Science Society of America 2009. Composite List of Weeds. http://www.wssa.net/Weeds/ID/WeedNames/namesearch.php. Accessed: September 14, 2009.Google Scholar
Zijlstra, C., Donkers-Venne, D. T. H. M., and Fargette, M. 2000. Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays. Nematology 2:847853.Google Scholar