Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T12:54:52.183Z Has data issue: false hasContentIssue false

Vegetative Reproduction Potential of Common Purslane (Portulaca oleracea)

Published online by Cambridge University Press:  20 January 2017

Christopher A. Proctor*
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583-0724
Roch E. Gaussoin
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583-0724
Zachary J. Reicher
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583-0724
*
Corresponding author's E-mail: caproctor@huskers.unl.edu

Abstract

Common purslane is a widely distributed summer annual weed. It can reproduce vegetatively from stem cuttings by forming adventitious roots from the cut end of the stem. Apart from large stem cuttings, it is unclear whether purslane cuttings of various plant tissues differ in their ability to reproduce asexually. The objective of the study was to determine the survival and asexual reproductive capacity of purslane cuttings. A greenhouse study evaluated three cuttings from two stem locations and a leaf from one stem location for their survival and new leaf growth after 21 d. Cuttings included a stem node with either leaves attached or removed and a stem internode, all from proximal and distal stem locations relative to the root crown, and a leaf from a proximal stem node. Stem node cuttings had ≥ 70% survival, whereas internodes had 0% survival. Nodes with leaves attached further increased survival by > 20%. The location of the cutting on the main stem did not affect survival. Only noded cuttings produced new leaves, and cuttings with leaves attached produced the most new leaves. For purslane to vegetatively reproduce, nodes on stem cuttings are required, and the presence of leaves on the cutting improves the survival and new leaf growth of cuttings. Therefore, mechanical methods of weed control that chop and spread purslane leaves and stems might not be effective and could ultimately increase weed populations.

La Portulaca oleracea es una maleza anual de verano ampliamente diseminada. Se puede reproducir vegetativamente a partir de cortes de tallos o esquejes formando raíces adventicias al extremo del corte del tallo. Con excepción de tallos muy grandes, no está claro si cortes de P. oleracea tomados de varios tejidos de la planta difieren en sus habilidades de reproducción asexual. El objetivo de este estudio fue determinar la supervivencia y la capacidad reproductiva asexual de cortes de tallos de P. oleracea. Un estudio de invernadero evalúo tres cortes tomados de dos sitios diferentes en el tallo y de un sitio con hoja, en cuanto a su supervivencia y nuevo crecimiento de hojas después de 21 días. Los cortes incluyeron un tallo con nudo ya sea con hojas o removidas, un entrenudo, todo con tallos con sitios proximales y distales relativo a la corona radical, y una hoja en un nudo proximal en un tallo. Los cortes de los tallos con nudo tuvieron ≥70% de supervivencia, mientras que los entrenudos tuvieron 0% de supervivencia. Los nudos con hojas tuvieron una supervivencia adicional >20%. La ubicación de los cortes en el tallo principal no afectó la supervivencia. Únicamente los cortes con nudo produjeron nuevas hojas y los cortes con hojas produjeron el mayor número de nuevas hojas. Para que P. oleracea se reproduzca vegetativamente se requieren nudos en los cortes o esquejes, y la presencia de hojas en los esquejes mejora la supervivencia y el crecimiento de nuevas hojas. Por lo tanto, los métodos mecánicos de control de maleza que cortan y dispersan las hojas y tallos de P. oleracea podrían no ser efectivos y pueden al final, incrementar su población.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Chapman, J., Stewart, R. B., and Yarnell, R. A. 1974. Archaeological evidence for pre-Columbian introduction of Portulaca oleracea and Mollugo verticillata into eastern North America. Econ. Bot. 28:411412.Google Scholar
Connard, M. H. and Zimmerman, P. W. 1931. The origins of adventitious roots in cuttings of Portulaca oleracea L. Contrib. Boyce Thompson Inst. 3:337346.Google Scholar
Gorske, S. F., Rhodes, A. M., and Hopen, H. J. 1979. A numerical taxonomic study of Portulaca oleracea . Weed Sci. 27:96102.Google Scholar
Haar, M. J. and Fennimore, S. J. 2003. Evaluation of integrated practices for common purslane (Portulaca oleracea) management in lettuce (Lactuca sativa). Weed Technol. 17:229233.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The world's worst weeds: distribution and biology. Honolulu, HI Published for the East-West Center by the University Press of Hawaii.Google Scholar
Hopen, H. J. 1972. Growth of common purslane as influencing control and importance as a weed. Weed Sci. 20:2023.Google Scholar
Kaplan, L. 1973. Ethnobotany of the Apple Creek archaeological site, southern Illinois. Am. J. Bot. 60:39.Google Scholar
Koch, K. and Kennedy, R. A. 1982. Crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. under natural environmental conditions. Plant Physiol. 69:757761.Google Scholar
Lara, M. V., Disante, K. B., Podesta, F. E., Andreo, C. S., and Drincovich, M. F. 2003. Induction of a crassulacean acid like metabolism in the C4 succulent plant, Portulaca oleracea L.: physiological and morphological changes are accompanied by specific modifications in phosphoenolpyruvate carboxylase. Photosynth. Res. 77:241254.Google Scholar
Matthews, J. F., Ketron, D. W., and Zane, S. F. 1993. The biology and taxonomy of the Portulaca oleracea L. (portulacaceae) complex in North America. Rhodora 95:166183.Google Scholar
Mitich, L. W. 1997. Common purslane (Portulaca oleracea). Weed Technol. 11:394397.Google Scholar
Miyanishi, K. and Cavers, P. B. 1980. The biology of Canadian weeds. 40. Portulaca oleracea L. Can. J. Plant Sci. 60:953963.Google Scholar
Miyanishi, K. and Cavers, P. B. 1981. Effects of hoeing and rototilling on some aspects of the population dynamics of pure stands of Portulaca oleracea L. (purslane). Weed Res. 21:4758.Google Scholar
Muenscher, W. C. 1980. Weeds. 2nd ed. Ithaca, NY Cornell University Press Comstock Publishing Assoc.Google Scholar
Proctor, C. A. and Reicher, Z. J. 2011. Pilot Study: Vegetative Reproduction of Common Purslane (Portulaca oleracea). Lincoln, NE UNL Turfgrass, University of Nebraska, http://turf.unl.edu/ResearchReports/PurslaneVegReproductionPilot2010.pdf. Accessed: February 14, 2011.Google Scholar
Rydberg, P. A. 1932. Portulacaceae. N. Am. Flora 21:279336.Google Scholar
SAS Institute. 2009. SAS Users Guide. Version 9.2. 2nd ed. Cary, NC Statistical Analysis Systems Institute.Google Scholar
Singh, K. P. 1973. Effect of temperature and light on seed germination of two ecotypes of Portulaca oleracea L. New Phytol. 72:289295.Google Scholar
Vengris, J., Dunn, S., and Stacewicz-Sapuncakis, M. 1972. Life history studies as related to weed control in the northeast. 7. Common purslane. Res. Bull. Agric. Exp. Sta. University of Massachusetts. No. 598, Amherst. 44 p.Google Scholar
Walker, W. M. 1936. The Troyville Mounds Catahoula Parish, Lousiana. Bureau Am. Ethnol. Bull. 113. 73 p.Google Scholar
Watson, P. J. 1969. The Prehistory of Salts Cave, Kentucky. Reports of Investigations, No. 16. Springfield, IL Illinois State Museum. 86 p.Google Scholar
Yamdagni, N. and Sen, D. N. 1973. Role of leaves present on the stem cuttings for vegetative propagation in Portulaca grandiflora L. Biochem. Physiol. Pflanz. 164:447449.Google Scholar
Zimmerman, C. A. 1976. Growth characteristics of weediness in Portulaca oleracea L. Ecology 57:964974.Google Scholar