Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T19:40:05.885Z Has data issue: false hasContentIssue false

Target-Site ACCase-Resistant Johnsongrass (Sorghum halepense) Selected in Summer Dicot Crops

Published online by Cambridge University Press:  20 January 2017

L. Scarabel
Affiliation:
Institute of Agro-environmental and Forest Biology (IBAF), CNR, AGRIPOLIS, Viale dell'Università 16, 35020 Legnaro (PD), Italy
S. Panozzo
Affiliation:
Institute of Agro-environmental and Forest Biology (IBAF), CNR, AGRIPOLIS, Viale dell'Università 16, 35020 Legnaro (PD), Italy
W. Savoia
Affiliation:
Syngenta Crop Protection S.p.A., Via Gallarate 139, 20151 Milano, Italy
M. Sattin*
Affiliation:
Institute of Agro-environmental and Forest Biology (IBAF), CNR, AGRIPOLIS, Viale dell'Università 16, 35020 Legnaro (PD), Italy
*
Corresponding author's E-mail: maurizio.sattin@ibaf.cnr.it.

Abstract

Johnsongrass is a troublesome weed infesting spring–summer crops. Poor control of johnsongrass after fluazifop-p-butyl treatments has been reported in central to northern Italy. Greenhouse and outdoor dose–response experiments revealed that four populations were highly resistant to fluazifop-p-butyl. All four were cross-resistant to other aryloxyphenoxypropionate (FOP) herbicides—propaquizafop, quizalofop, and haloxyfop. The resistance indexes ranged between 8 and 25 for propaquizafop and quizalofop, whereas a greater variability between populations was detected in response to haloxyfop. Conversely, cycloxydim and clethodim determined only a shift in the susceptibility with resistance index (RI) values of 2 to 3. Molecular analyses revealed that resistant plants possessed an insensitive acetyl coenzyme-A carboxylase (ACCase) target enzyme due to an Ile-to-Asn substitution at codon 2041. To our knowledge, this is the first report of such a mutation endowing ACCase resistance in johnsongrass. A molecular marker (CAPS assay) was developed for its rapid detection. Alternative mode of action herbicides S-metolachlor and nicosulfuron controlled all the FOP-resistant populations. Only a few chemical options are still available, and they have different efficacy on germinating seeds and sprouting rhizomes. To maintain efficacy over time, herbicides should be integrated with agronomic practices.

Sorghum halepense es una maleza problemática que infesta cultivos de primavera y verano. En el centro y norte de Italia se ha reportado un control pobre de S. halepense después de tratamientos con fluazifop-p-butyl. Experimentos de respuesta a dosis en invernadero y al aire libre revelaron que cuatro poblaciones fueron altamente resistentes a fluazifop-p-butyl. Las cuatro poblaciones tuvieron resistencia cruzada a otros herbicidas aryloxyphenoxypropionate (FOP), tales como propaquizafop, quizalofop, y haloxyfop. Los índices de resistencia variaron entre 8 y 25 para propaquizafop y quizalofop, mientras que se detectó una mayor variabilidad entre poblaciones en respuesta a haloxyfop. En cambio, cycloxydim y clethodim determinó solamente una cambio menor en la susceptibilidad con valores del índice de resistencia (RI) de 2 a 3. Análisis moleculares revelaron que las plantas resistentes poseían una enzima acetyl coenzyme-A carboxylase (ACCase) insensible debido a una sustitución de Ile por Asn en el codón 2041. Con base en nuestro conocimiento, este es el primer reporte de esta mutación que confiere resistencia a ACCase en S. halepense. Un marcador molecular (ensayo CAPS) fue desarrollado para la detección rápida de la mutación. Herbicidas con modos de acción alternativos, como S-metolachlor y nicosulfuron controlaron todas las poblaciones resistentes a FOP. Solamente unos pocas opciones químicas están todavía disponibles, y estas tienen diferente eficacia sobre semillas germinadas y rizomas rebrotados. Para mantener la eficacia a lo largo del tiempo, estos herbicidas deberían ser integrados con prácticas agronómicas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, HJ, Tardif, FJ (2012) Herbicide cross resistance in weeds. Crop Prot 35:1528 Google Scholar
Bradley, KW Jr., Hagood, ES (2001) Identification of a johnsongrass (Sorghum halepense) biotype resistant to aryloxyphenoxypropionate and cyclohexanedione herbicides in Virginia. Weed Technol 15:623627 Google Scholar
Bridges, DC, Chandler, JM (1987) Influence of johnsongrass (Sorghum halepense) density and period of competition on cotton yield. Weed Sci 35:6367 Google Scholar
Burke, IC, Wilcut, JW, Cranmer, J (2006) Cross-resistance of a johnsongrass (Sorghum halepense) biotype to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Technol 20:571575 Google Scholar
Collavo, A, Strek, H, Beffa, R, Sattin, M (2013) Management of an ACCase inhibitor resistant Lolium rigidum population based on the use of ALS inhibitors: weed population evolution observed over a seven year field-scale investigation. Pest Manag Sci 69:200208 Google Scholar
Délye, C (2005) Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53:728746 CrossRefGoogle Scholar
Doyle, JJ, Doyle, JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:1115 Google Scholar
Hall, TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:9598 Google Scholar
Harrington, GT (1923) Use of alternating temperatures in the germination of seeds. J Agr Res 23:295332 Google Scholar
Harwood, JL (1988) Fatty acid metabolism. Annu Rev Plant Physiol 39:101138 CrossRefGoogle Scholar
Heap, I (2013) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed August 20, 2013Google Scholar
Holm, LG, Plucknett, DL, Pancho, JV, Herberger, JP (1977) The World's Worst Weeds: Distribution and Biology. 2nd ed. Malabar, FL: Krieger. Pp 5461 Google Scholar
Kaloumenos, NS, Eleftherohorinos, IG (2009) Identification of a johnsongrass (Sorghum halepense) biotype resistant to ACCase-inhibiting herbicides in northern Greece. Weed Technol 23:470476 CrossRefGoogle Scholar
Kershner, KS, Al-Khatib, K, Krothapalli, K, Tuinstra, MR (2012) Genetic resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides in grain Sorghum . Crop Sci 52:6473 Google Scholar
McWhorter, CG (1989) History, biology and control of johnsongrass. Rev Weed Sci 4:85121 Google Scholar
Mitskas, MB, Tsolis, CE, Eleftherohorinos, IG, Damalas, CA (2003) Interference between corn and johnsongrass (Sorghum halepense) from seed or rhizomes. Weed Sci 51:540545 Google Scholar
Nikolskaya, T, Zagnitko, O, Tevzadze, G, Haselkorn, R, Gornicki, P (1999) Herbicide sensitivity determinant of wheat plastid acetyl-CoA carboxylase is located in a 400–amino acid fragment of the carboxyltransferase domain. Proc Natl Acad Sci USA 96:1464714651 Google Scholar
Obermeier, MR, Barrett, M, Witt, WW, Green, JD (1997) ACCase inhibitor resistance observed in johnsongrass (Sorghum halepense (L.) Pers.) Weed Sci Soc Am Abstr 37:162 Google Scholar
Onofri, A (2005) Bioassay97: a new Excel® VBA macro to perform statistical analyses on herbicide dose-response data. Riv Ital Agrometeorol 3:4045 Google Scholar
Powles, SB, Yu, Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317347.Google Scholar
Scarabel, L, Panozzo, S, Varotto, S, Sattin, M (2011) Allelic variation of the ACCase gene and response to ACCase-inhibiting herbicides in pinoxaden-resistant Lolium spp. Pest Manag Sci 67:932941 Google Scholar
Seefeldt, S, Jensen, JE, Fuerst, EP (1995) Log-logistic analysis of herbicide dose–response relationships. Weed Technol 9:218227 Google Scholar
Smeda, RJ, Currie, RS, Rippee, JH (2000) Fluazifop-p resistance expressed as a dominant trait in sorghum (Sorghum bicolor). Weed Technol 14:397401 Google Scholar
Smeda, RJ, Snipes, CE, Barrentine, WL (1997) Identification of graminicide-resistant johnsongrass (Sorghum halepense). Weed Sci 45:132137 CrossRefGoogle Scholar
Taylorson, RB, McWhorter, CG (1969) Seed dormancy and germination in ecotypes of johnsongrass. Weed Sci 17:359361 Google Scholar
Zhang, XQ, Powles, SB (2006) Six amino acid substitutions in the carboxyl-transferase domain of the plastidic acetyl-CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population. New Phytol 172:636645 Google Scholar
Zhang, H, Tweel, B, Tong, L (2004) Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop. Proc Natl Acad Sci USA 101:59105915 CrossRefGoogle ScholarPubMed