Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T00:41:31.192Z Has data issue: false hasContentIssue false

Tall Waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri) Seed Production and Retention at Soybean Maturity

Published online by Cambridge University Press:  20 January 2017

Lauren M. Schwartz*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Bryan G. Young
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Kevin W. Bradley
Affiliation:
Department of Plant Sciences, University of Missouri, Columbia, MO 65211
Greg R. Kruger
Affiliation:
University of Nebraska, North Platte, NE 69101
Vince M. Davis
Affiliation:
Department of Agronomy, University of Wisconsin, Madison, WI 53706
Larry E. Steckel
Affiliation:
Department of Plant Sciences, University of Tennessee, Jackson, TN 38301
Michael J. Walsh
Affiliation:
School of Plant Biology, University of Western Australia, Crawley WA, Australia 6009
*
Corresponding author's E-mail: lmschwar@uark.edu.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two of the most problematic Amaranthus species in soybean production today are tall waterhemp and Palmer amaranth. This study determined the percentage of tall waterhemp and Palmer amaranth seed that was retained by the weed at soybean maturity to assess the likelihood of using at-harvest weed seed control tactics for soil seedbank management. Palmer amaranth plants were collected from fields in Arkansas, Tennessee, Illinois, Missouri, and Nebraska, and tall waterhemp plants were collected from fields in Nebraska, Missouri, Wisconsin, and Illinois. Collected plants were assessed for at-harvest weed seed retention in 2013 and 2014. Within 1 wk of soybean maturity, Amaranthus plants were harvested and the loose soil and debris beneath the plants were swept into a pan with a hand broom to collect any shattered seed. Percent seed retention ranged from 95 to 100% for all states both years, regardless of species. There was a strong correlation between weed biomass (g) and total seed production (no. plant−1) in that the larger the plant, the more seeds it produced. However, there was no correlation between percent seed retention and weed biomass, which indicates that regardless of plant size and likely time of emergence, seed retention is high at the time of crop maturity. Overall, this study demonstrated that there is great opportunity for Palmer amaranth and tall waterhemp seed capture or destruction at soybean harvest. It is likely that nearly all of the seeds produced for both Amaranthus species passes through the combine during harvest to be returned to the soil seedbank. Thus, there is continued need for research focused on developing and testing harvest weed seed control tactics that aim at reducing the soil seedbank and lowering risks for evolution of herbicide resistance.

Dos de las especies de Amaranthus más problemáticas en la producción de soja, hoy en día, son Amaranthus tuberculatus y Amaranthus palmeri. Este estudio determinó el porcentaje de semilla de A. tuberculatus y A. palmeri que fue retenido por la maleza al momento de la madurez de la soja, para evaluar la probabilidad de usar tácticas para el control de semilla de malezas durante la cosecha para el manejo del banco de semillas. Plantas de A. palmeri fueron colectadas en campos en Arkansas, Tennessee, Illinois, Missouri, y Nebraska, y plantas de A. tuberculatus fueron colectadas en campos en Nebraska, Missouri, Wisconsin, e Illinois. Las plantas colectadas fueron evaluadas por su retención de semilla al momento de la cosecha en 2013 y 2014. A la semana de la madurez de la soja, las plantas de Amaranthus fueron cosechadas y el suelo suelto y los residuos vegetales debajo de las plantas fueron removidos con una escoba de mano y fueron depositados en un contenedor para colectar semilla que hubiera caído al suelo antes de la cosecha. El porcentaje de retención de semilla varió de 95 a 100% en todos los estados y en ambos años, sin importar la especie. Hubo una correlación alta entre la biomasa de la maleza (g) y el total de semilla producida (no. planta−1), así entre más grande la planta, más semilla produjo. Sin embargo, no hubo una correlación entre el porcentaje de retención de semilla y la biomasa de la maleza, lo que indica que sin importar el tamaño de la planta y el momento de emergencia, la retención de la semilla es alta al momento de la madurez del cultivo. En general, este estudio demostró que existe una gran oportunidad para capturar o destruir la semilla de A. palmeri y A. tuberculatus durante la cosecha de la soja. Es probable que casi toda la semilla producida por ambas especies de Amaranthus pase por la cosechadora al momento de la cosecha y que sea retornada al banco de semillas del suelo. Por esta razón, existe una necesidad de investigación que se enfoque en el desarrollo y evaluación de tácticas de control de semillas de malezas durante la cosecha con el objetivo de reducir el banco de semillas del suelo y a su vez disminuir el riesgo de evolución de resistencia a herbicidas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Footnotes

Associate Editor for this paper: Prashant Jha, Montana State University.

References

Literature Cited

Bensch, CN, Horak, MJ, Peterson, D (2003) Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (Palmer amaranth), and common waterhemp (A. rudis) in soybean. Weed Sci 51:3743 Google Scholar
Blanco-Moreno, JM, Chamorro, L, Masalles, RM, Recasens, J, Sans, FX (2004) Spatial distribution of Lolium rigidum seedlings following seed dispersal by combine harvesters. Weed Res 44:375387 Google Scholar
Costea, M, Weaver, SE, Tardif, FJ (2005) The biology of invasive alien plants in Canada. 3. Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea & Tardif. Can J Plant Sci 85:507522 Google Scholar
Dalley, CD, Kells, JJ, Renner, KA (2004) Effect of glyphosate application timing and row spacing on weed growth in corn (Zea mays) and soybean (Glycine max). Weed Technol 18:177182 Google Scholar
Davis, AS, Schutte, BJ, Hager, AG, Young, BG (2015) Palmer amarnath (Amaranthus palmeri) damage niche in Illinois soybean is seed-limited. Weed Sci 63:658668 Google Scholar
Dieleman, A, Hamill, AS, Fox, GC, Swanton, CJ (1996) Decision rules for postemergence control of pigweed (Amaranthus spp.) in soybean (Glycine max). Weed Sci 44:126132 Google Scholar
Dunan, CM, Westra, P, Schweizer, EE, Lybecker, DW, Moore, FD (1995) The concept and application of early economic period threshold: the case of DCPA in onions (Allium cepa). Weed Sci 43:634639 Google Scholar
Gill, GS (1996) Management of herbicide resistant ryegrass in Western Australia—research and its adoption. Pages 542545 in Shepherd, RCH, ed. 11th Australian Weeds Conference. Melbourne, Victoria, Australia Weed Science Society of Victoria Google Scholar
Harrison, SK (1990) Interference and seed production by common lambsquarters (Chenopodium album) in soybeans (Glycine max). Weed Sci 49:224229 Google Scholar
Hartzler, RG, Buhler, DD, Stoltenberg, DE (1999) Emergence characteristics of four annual weed species. Weed Sci 47:578584 Google Scholar
Heap, I (2014) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed July 07, 2015Google Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 Google Scholar
Jha, P, Norsworthy, JK, Bridges, W, Riley, MB (2008) Influence of glyphosate timing and row width on Palmer amaranth (Amaranthus palmeri) and pusley (Richardia spp.) demographics in glyphosate-resistant soybean. Weed Sci 56:408415 Google Scholar
Johnson, WG (2000) Herbicide resistant corn–survey results from 1998 and 2000. Proc North Cent Weed Sci Soc 55:7071 Google Scholar
Keeley, PE, Carter, CH, Thullen, RJ (1987) Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 35:199204 Google Scholar
Knezevic, SZ, Weise, SF, Swanton, CJ (1994) Interference of redroot pigweed (Amaranthus retroflexus) in corn (Zea mays). Weed Sci 42:568573 Google Scholar
Nordby, D, Hartzler, B, Bradley, K 2007. Biology and Management of Waterhemp. Purdue Extension Publication GWC-13. in The Glyphosate, Weeds, and Crop Series. West Lafayette, IN: Purdue Exension. 11 pGoogle Scholar
Norris, RF (2007) Weed fecundity: current status and future needs. Crop Prot 26:182188 Google Scholar
Norsworthy, JK, Griffith, G, Griffin, T, Bagavathiannan, M, Gbur, EE (2014) In-field movement of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) and its impact on cotton lint yield: evidence supporting a zero-threshold strategy. Weed Sci 62:237249 Google Scholar
Norsworthy, JK, Smith, KL, Steckel, LE, Koger, CH (2009) Weed seed contamination of cotton gin trash. Weed Technol 23:574580 Google Scholar
Norwsorthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162 Google Scholar
Sellers, BA, Smeda, RJ, Johnson, WG, Kendig, JA, Ellersieck, MR (2003) Comparative growth of six Amaranthus species in Missouri. Weed Sci 51:329333 Google Scholar
Sosnoskie, LM, Webster, TM, MacRae, AW, Grey, TL, Culpepper, AS (2012) Pollen-mediated dispersal of glyphosate-resistance in Palmer amaranth under field conditions. Weed Sci 60:366373 Google Scholar
Steckel, LE, Main, CL, Ellis, AT, Mueller, TC (2008) Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance. Weed Technol 22:119123 Google Scholar
Steckel, LE, Sprague, CL (2004a) Common waterhemp (Amaranthus rudis) interference in corn. Weed Sci 52:359364 Google Scholar
Steckel, LE, Sprague, CL (2004b) Late-season common waterhemp (Amaranthus rudis) interference in narrow- and wide-row soybean. Weed Technol 18:947952 Google Scholar
Steckel, LE, Sprague, CL, Stoller, EW, Wax, LM (2004) Temperature effects on germination on nine Amaranthus species. Weed Sci 52:217221 Google Scholar
Swanton, CJ, Nkoa, R, Blackshaw, RE (2015) Experimental methods for crop–weed competition studies. Weed Sci 63:211 Google Scholar
Swanton, CJ, Weise, SF (1991) Integrated weed management: the rationale and approach. Weed Technol 5:657663 Google Scholar
Trucco, F, Tranel, PJ (2011) Amaranthus . Pages 1121 in Kole, C, ed. Wild Crop Relatives: Genomic and Breeding Resources. Berlin: Springer-Verlag Google Scholar
Walsh, MJ, Harrington, RB, Powles, SB (2012) Harrington seed destructor: a new nonchemical weed control tool for global grain crops. Crop Sci 52:13431347 Google Scholar
Walsh, MJ, Newman, P (2007) Burning narrow windrows for weed seed destruction. Field Crops Res 104:2440 Google Scholar
Walsh, MJ, Newman, P, Powles, SB (2013) Targeting weed seeds in-crop: a new weed control paradigm for global agriculture. Weed Technol 27:431436 Google Scholar
Walsh, MJ, Powles, SB (2007) Management strategies for herbicide-resistant weed populations in Australian dryland crop production systems. Weed Technol 21:332338 Google Scholar
Walsh, MJ, Powles, SB (2014) High seed retention at maturity of annual weeds infesting crop fields highlights the potential for harvest weed seed control. Weed Technol 28:486493 Google Scholar
Ward, SM, Webster, TM, Steckel, LE (2013) Palmer amaranth (Amaranthus palmeri): a review. Weed Technol 27:1227 Google Scholar
Webster, TM, Grey, TL (2015) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) morphology, growth, and seed production in Georgia. Weed Sci 63:264282 Google Scholar
Zimdahl, RL (2004) Weed-Crop Competition, 2nd edn. Oxford, UK: Blackwell Publishing. 220 pGoogle Scholar