Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T23:32:02.375Z Has data issue: false hasContentIssue false

Sensitivity of Leguminous Crops to Saflufenacil

Published online by Cambridge University Press:  20 January 2017

Nader Soltani*
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, ON, Canada N0P 2C0
Christy Shropshire
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, ON, Canada N0P 2C0
Peter H. Sikkema
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, ON, Canada N0P 2C0
*
Corresponding author's E-mail: nsoltani@ridgetownc.uoguelph.ca.

Abstract

There is little information on the tolerance of leguminous crops to saflufenacil. A field study was conducted three times over a 2-yr period (2006, 2007) in Ontario, Canada, to determine the tolerance of adzuki bean, cranberry bean, lima bean, processing pea, snap bean, soybean, and white (navy) bean to saflufenacil applied PRE at 100 and 200 g ai/ha. Saflufenacil caused 51 to 99% injury, reduced height 25 to 93%, reduced shoot dry weight 92 to 99%, and reduced seed yield 56 to 99% in adzuki bean, cranberry bean, lima bean, snap bean, and white bean. Injury was lower in soybean and processing pea. Saflufenacil caused 1 to 25% injury, reduced height 3 to 13%, reduced shoot dry weight 5 to 30%, and reduced seed yield 0 to 4% in soybean and processing pea. Cranberry bean, snap bean, white bean, and lima bean were the most sensitive crops to saflufenacil followed by adzuki bean. Soybean and processing pea were the most tolerant to saflufenacil. Based on these results, saflufenacil applied PRE can be safely used in specific cultivars of pea and soybean at the proposed rate of 100 g/ha. However, there is not an acceptable margin of crop safety for saflufenacil PRE at 100 or 200 g/ha in adzuki, cranberry, lima, snap, and white bean.

Existe muy poca información sobre la tolerancia del cultivo de leguminosas hacia el saflufenacil. Un estudio de campo fue llevado al cabo tres veces durante un período de 2 años (2006, 2007) en Ontario para determinar la tolerancia del Vigna angularis L. ‘Erimo’, Phaseolus vulgaris L. ‘Etna’, Phaseolus lunatus L. ‘Kingston’, Lathyrus odoratus L. ‘Durango’, Phaseolus vulgaris L. ‘Matador’, Glycine max L. ‘DK 28-52R’, y Phaseolus vulgaris L. ‘OAC Rex’ al saflufenacil aplicado en pre-siembra a 100 y 200 g ia/ha. El saflufenacil causó de un 51 a un 99% de daño, redujo la altura de las plantas en un 25 a un 93%, disminuyó el peso seco de la parte aérea de un 92 a un 99%, así como también redujo la producción de semilla de un 56 a un 99% en Vigna angularis, Phaseolus vulgaris Etna, Phaseolus lunatus, Phaseolus vulgaris Matador, y Phaseolus vulgaris OAC Rex. El daño fue menor en Glycine max y en Lathyrus odoratus. El saflufenacil ocasionó del 1 al 25% de daño, redujo la altura de un 3% a un 13%, el peso seco de la parte aérea disminuyó de un 5 a un 30% y bajó el rendimiento de semilla de 0 a 4% en la soya y el chícharo. Phaseolus vulgaris Etna, Phaseolus vulgaris Matador, Phaseolus vulgaris OAC Rex, y Phaseolus lunatus fueron los cultivos más sensibles al saflufenacil seguidos por Vigna angularis. Glycine max y Lathyrus odoratus fueron los más resistentes al herbicida. Basándose en estos resultados, el saflufenacil aplicado en pre-siembra puede ser usado con seguridad en los cultivares específicos de Lathyrus odoratus y Glycine max a la dosis propuesta de 100 g ia /ha. Sin embargo, no existe margen aceptable de seguridad para el saflufenacil aplicado en pre-siembra a 100 o 200 g ia/ha en el cultivo de Vigna angularis, Phaseolus vulgaris Etna, Phaseolus lunatus, Phaseolus vulgaris Matador, y Phaseolus vulgaris OAC Rex.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, 2008. Kixor® worldwide technical brochure. Research Triangle Park, NC: BASF Corporation. 18.Google Scholar
Bartlett, M. S. 1947. The use of transformations. Biometrics 3:3952.Google Scholar
Blackshaw, R. E. and O'Donovan, J. T. 1993. High crop seed rate can aid weed management. Proc. Brighton Crop. Prot. Conf 3:10031008.Google Scholar
Hekmat, S., Shropshire, C., Soltani, N., and Sikkema, P. H. 2007. Response of dry bean to sulfentrazone. Crop Prot 26:525529.Google Scholar
Liebl, R. A., Walter, H., Bowe, S. J., Holt, T. J., and Westberg, D. E. 2008. BAS 800H: a new herbicide for preplant burndown and preemergence dicot weed control. Weed Sci. Soc. Am 48:120. [Abstract.].Google Scholar
Malik, V. S., Swanton, C. J., and Michaels, T. E. 1993. Interaction of white bean (Phaselous vulgaris L.) cultivars, row spacing, and seeding density with annual weeds. Weed Sci 41:6268.Google Scholar
[OMAFRA] Ontario Ministry of Agriculture, Food and Rural Affairs 2008. Guide to weed control. Publication 75. Toronto, Canada: OMAFRA.Google Scholar
Sikkema, P. H., Deen, W., and Vyas, S. 2005. Weed control in pea with reduced rates of imazethapyr applied preemergence and postemergence. Weed Technol 19:1418.Google Scholar
Sikkema, P. H., Shropshire, C., and Soltani, N. 2009. Responses of dry bean to pre-plant incorporated and pre-emergence applications of S-metolachlor and fomesafen. Crop Prot 28:744748.Google Scholar
Soltani, N., Bowley, S., and Sikkema, P. H. 2005. Responses of dry beans (Phaseolus vulgaris) to flumioxazin. Weed Technol 19:351358.Google Scholar
VanGessel, J. M., Monks, W. D., and Quintin, R. J. 2000. Herbicides for potential use in lima bean (Phaseolus lunatus) production. Weed Technol 14:279286.Google Scholar
Wall, D. A., Friesen, G. H., and Bhati, T. K. 1991. Wild mustard interference in traditional and semi-leafless peas. Can J. Plant Sci 71:473480.Google Scholar
Wilson, R. G. 2005. Responses of dry bean and weeds to fomesafen and fomesafen tankmixtures. Weed Technol 19:201206.Google Scholar