Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T23:13:51.279Z Has data issue: false hasContentIssue false

Root Biology of Grasses and Ecology of Rhizobacteria for Biological Control

Published online by Cambridge University Press:  12 June 2017

Horace D. Skipper
Affiliation:
Dep. Agron., Clemson Univ., Clemson, SC 29634-0359
Alex G. Ogg Jr.
Affiliation:
USDA-ARS, 165 Johnson Hall, Washington State Univ., Pullman, WA 99164-6416
Ann C. Kennedy
Affiliation:
USDA-ARS, 215 Johnson Hall, Washington State Univ., Pullman, WA 99164-6421

Abstract

Rhizobacteria are being evaluated for promotion of plant growth and for biological control of weeds, insects, diseases, and nematodes. Although considerable efforts have been allocated to this approach to biological control, commercial success remains elusive yet intriguing. In this review, the root biology of downy brome and winter wheat is described as an initial model of the information needed for other plant hosts. A limited review of rhizobacteria in disease management is presented to demonstrate the potential and some limitations with rhizobacteria as biocontrol agents. Several techniques are described to improve the survival of a rhizobacterium to suppress downy brome. To achieve success with rhizobacteria in pest management, more information is needed on the root biology of the host plants and the ecology of the rhizobacteria.

Type
Symposium
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Aguirre, L. and Johnson, D. A. 1991. Root morphological development in relation to shoot growth in seedlings of four range grasses. J. Range Manage. 44:341346.CrossRefGoogle Scholar
2. Alstrom, S. 1987. Factors associated with detrimental effects of rhizobacteria on plant growth. Plant Soil 102:39.CrossRefGoogle Scholar
3. Alstrom, S. and Burns, R. G. 1989. Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol. Fertil. Soils 7:232238.CrossRefGoogle Scholar
4. Anuratha, C. S. and Gnanamanickam, S. S. 1990. Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria. Plant Soil 124:109116.CrossRefGoogle Scholar
5. Astrom, B. 1991. Intra- and interspecific variations in plant response to inoculations with deleterious rhizosphere pseudomonads. J. Phytopathol. 131:184192.CrossRefGoogle Scholar
6. Astrom, B. and Gerhardson, B. 1988. Differential reactions of wheat and pea genotypes to toot inoculation with growth-affecting rhizosphere bacteria. Plant Soil 109:263269.CrossRefGoogle Scholar
7. Atlas, R. M. and Bartha, R. 1993. Microbial Ecology. The Benjamin/Cummings Publishing Co., Inc., New York. 563 p.Google Scholar
8. Baker, R. 1988. Trichoderma spp. as plant-growth stimulants. CRC Crit. Rev. Biotechnol. 7:97105.CrossRefGoogle Scholar
9. Bakker, A. W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth reduction. Soil Biol. Biochem, 19:452458.CrossRefGoogle Scholar
10. Barber, D. A. 1968. Microorganisms and the inorganic nutrition of higher plants. Annu. Rev. Plant Physiol. 19:7188.CrossRefGoogle Scholar
11. Beauchamp, C. J., Patrice, D., Kloepper, J., and Antoun, H. 1991. Physiological characterization of opine-utilizing rhizobacteria for traits related to plant growth promoting activity. Plant Soil 132:273279.CrossRefGoogle Scholar
12. Belford, R. K., Klepper, B., and Rickman, R. W. 1987. Studies of intact-root systems of field grown winter wheal. II. Root and shoot developmental patterns as related to nitrogen fertilizer. Agron. J. 79:310319.CrossRefGoogle Scholar
13. Bolton, H. Jr. and Elliott, L. F. 1989. Toxin production by a rhizobacterial sp. that inhibits wheat root growth. Plant Soil 114:269278.Google Scholar
14. Bolton, H. Jr., Fredrickson, J. K., and Elliott, L. F. 1993. Microbial ecology of the rhizosphere. p. 2763 in Melting, F. B. Jr., ed. Soil Microbial Ecology. Marcel Dekker, Inc., New York.Google Scholar
15. Bowen, G. D. and Rovira, A. D. 1976. Microbial colonization of plant roots. Annu. Rev. Phytopathol. 14:121144.CrossRefGoogle Scholar
16. Brian, P. W. 1957. Effects of antibiotics on plants. Annu. Rev. Plant Physiol. 8:413426.CrossRefGoogle Scholar
17. Bull, C. T., Weller, D. M., and Thomashow, L. S. 1991. Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2–79. Phytopathology 81:954959.CrossRefGoogle Scholar
18. Buyer, J. S. and Sikora, L. J. 1990. Rhizosphere interactions and siderophores. Plant Soil 129:101107.CrossRefGoogle Scholar
19. Caldwell, M. M. and Richards, J. H. 1986. Competing root systems: morphology and models of absorption. p. 251273 in Givnish, T. J., ed. On the Economy of Plant Form and Function, Cambridge Univ. Press, New York.Google Scholar
20. Campbell, R. and Ephgrave, J. M. 1983. Effect of bentonite clay on the growth of Gaeumannomyces graminis var. tritici and its interactions with antagonistic bacteria. J. Gen. Microbiol. 129:771777.Google Scholar
21. Capper, A. L., and Campbell, R. 1986. The effect of artificially inoculated antagonistic bacteria on the prevalence of take-all disease of wheat in field experiments. J. Appl. Bacteriol. 60:155160.CrossRefGoogle Scholar
22. Cherrington, C. A. and Elliott, L. F. 1987. Incidence of inhibitory pseudomonads in the Pacific Northwest. Plant Soil 101:159165.CrossRefGoogle Scholar
23. Clark, F. E. 1949. Soil microorganisms and plant roots. Adv. Agron. 1:241288.CrossRefGoogle Scholar
24. Cline, J. F., Uresk, D. W., and Richard, W. H. 1977. Comparison of soil water used by a sagebrush, bluebunch, and cheatgrass community. J. Range Manage. 30:199201.CrossRefGoogle Scholar
25. Curl, E. A. and Truelove, B. 1986. The Rhizosphere. Springer-Verlag. New York. 228 p.CrossRefGoogle Scholar
26. Devi, T. V., Vizhi, R. M., Sakthivel, N., and Gnanamanickam, S. S. 1989. Biological control of sheath-blight of rice in India with antagonistic bacteria. Plant Soil 119:325330.CrossRefGoogle Scholar
27. Dotray, P. A. and Young, E. L. 1993. Characterization of root and shoot development of jointed goatgrass (Aegilops cylindrica). Weed Sci. 41:353361.CrossRefGoogle Scholar
28. Doty, J. A. and Kennedy, A. C. 1991. Downy brome and winter wheat seed colonization by a plant-suppressive rhizobacterium. Agron. Abstr. 54:262.Google Scholar
29. Drahos, D. J. 1991. Current practices for monitoring genetically engineered microbes in the environment. AgBiotech News Inf. 3:3948.Google Scholar
30. Dunlop, R. W., Simon, A., Sivasithamparam, K., and Ghisalberti, E. E. 1989. An antibiotic from Trichoderma koningii active against soilborne plant pathogens. J. Nat. Prod. 52:6774.CrossRefGoogle Scholar
31. Dupler, M. and Baker, R. 1984. Survival of Pseudomonas putida, a biological control agent, in soil. Phytopathology 74:195200.CrossRefGoogle Scholar
32. Elad, Y. and Chet, I. 1987. Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology 77:190195.CrossRefGoogle Scholar
33. Elliott, E. F. and Lynch, J. M. 1985. Plant growth-inhibitory pseudomonads colonizing winter wheat (Triticum aestivum L.) roots. Plant Soil 84:5765.CrossRefGoogle Scholar
34. Esau, K. 1967. The root. p. 481538 in Plant Anatomy. John Wiley and Sons, Inc., New York.Google Scholar
35. Fleming, G. F., Young, F. L., and Ogg, A. G. Jr. 1988. Competitive relationships among winter wheat (Triticum aestivum), jointed goatgrass (Aegilops cylindrica), and downy brome (Bromus tectorum). Weed Sci. 36:479486.CrossRefGoogle Scholar
36. Fravel, D. R. 1988. Role of antibiosis in the biocontrol of plant diseases. Annu. Rev. Phytopathol. 26:7591.CrossRefGoogle Scholar
37. Fredrickson, J. K. and Elliott, L. F. 1985. Colonization of winter wheal roots by inhibitory rhizobacteria. Soil Sci. Soc. Am. J. 49:11721177.CrossRefGoogle Scholar
38. Fredrickson, J. K. and Elliott, L. F. 1985. Effects on winter wheat seedling growth by toxin producing rhizobacteria. Plant Soil 83:399409.CrossRefGoogle Scholar
39. Gardner, J. M., Chandler, J. E., and Feldman, A. W. 1984. Growth promotion and inhibition by antibiotic-producing fluorescent pseudomonads on citrus roots. Plant Soil 77:103113.CrossRefGoogle Scholar
40. Grayston, S. J. and Germida, J. J. 1990. Influence of crop rhizospheres on populations and activity of heterotrophic sulfur-oxidizing microorganisms. Soil Biol. Biochem. 22:457463.CrossRefGoogle Scholar
41. Gurusiddaiah, S., Gealy, D. R., Kennedy, A. C., and Ogg, A. G. Jr. 1994. Isolation and characterization of metabolites from Pseudomonas fluorescens-D7 for control of downy brome (Bromus tectorum L.). Weed Sci. 42:492501.CrossRefGoogle Scholar
42. Hamdan, H., Thomashow, L. S., and Weller, D. M. 1991. Relative importance of fluorescent Siderophores and other factors in biological control of Gaeumannomyces grammis var. tritici by Pseudomonas fluorescens 2–79 and M4-80R. Appl. Environ. Microbiol. 57:32703277.CrossRefGoogle ScholarPubMed
43. Harris, G. A. 1977. Root phenology as a factor of competition among grass seedlings. J. Range Manage. 30:172177.CrossRefGoogle Scholar
44. Harris, P. H. and Stahlman, P. W. 1992. Biological weed control in wheat using deleterious rhizobacteria. Weed Sci. Soc. Am. Abstr. 32:50.Google Scholar
45. Harris, P. H. and Stahlman, P. W. 1993. Soil bacteria selectively inhibit winter annual grass weeds in winter wheat. Agron. Abstr. 250.Google Scholar
46. Hiltner, A. 1904. Uber neuere erfahrungen und probleme auf dem gebiet der bodenbakteiologie und unter besonderer berusckichtigung der rundungung und brache. Arb. Dtsch. Landwirtsch. Ges., Berlin 98:5978.Google Scholar
47. Howie, W. J., Cook, R. J., and Weller, D. M. 1987. Effects of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 77:286292.CrossRefGoogle Scholar
48. Johnson, B. N., Kennedy, A. C., and Ogg, A. G. Jr. 1993. Suppression of downy brome growth by a rhizobacterium in controlled environments. Soil Sci. Soc. Am. J. 57:7377.CrossRefGoogle Scholar
49. Juhnke, M. E., Mathre, D. E., and Sands, D. C. 1987. Identification and characterization of rhizosphere-competent bacteria of wheat. Appl. Environ. Microbiol. 53:27932799.CrossRefGoogle ScholarPubMed
50. Kapulnik, Y. 1991. Plant-growth-promoting rhizobacteria, p. 717729 in Waisel, Y., Eshel, A., and Kafkafi, U., eds. Plant Roots: The Hidden Half. Marcel Dekker, Inc., New York.Google Scholar
51. Katznelson, H., Lochhead, A. G., and Timonin, M. I. 1948. Soil microorganisms and the rhizosphere. Bot. Rev. 14:543587.CrossRefGoogle Scholar
52. Kennedy, A. C., Bolton, H. Jr., Stroo, H. F., and Elliott, L. F. 1992. The competitive abilities of the Tn5 Tox- mutants of a rhizobacterium inhibitory to wheat growth. Plant Soil 144:143153.CrossRefGoogle Scholar
53. Kennedy, A. C., Elliott, E. F., Young, E. L., and Douglas, C. L. 1991. Rhizobacteria suppressive to the weed downy brome. Soil Sci. Soc. Am. J. 55:722727.CrossRefGoogle Scholar
54. Klepper, B. 1991. Root-shoot relationships. p. 265286 in Waisel, Y., Eshel, A. and Kafkafi, U. eds. Plant Roots: The Hidden Half. Marcel Dekker, Inc., New York.Google Scholar
55. Kloepper, J. W. 1993. Plant growth-promoting rhizobacteria as biological control agents. p. 255274 in Melting, F. B. Jr., ed. Soil Microbial Ecology. Marcel Dekker, Inc., New York.Google Scholar
56. Kloepper, J. W., Schroth, M. N., and Miller, T. D. 1980. Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:10781082.CrossRefGoogle Scholar
57. Kloepper, J. W., Zablotowicz, R. M., Tipping, E. M., and Lifshitz, R. 1991. Plant growth promotion mediated by bacterial rhizosphere colonizers. p. 315326 in Keister, D. L. and Cregan, P. B., eds. The Rhizosphere and Plant Growth. Kluwer Academic Publishers, The Netherlands.Google Scholar
58. Kremer, R. J. 1986. Antimicrobial activity of velvetleaf (Abutilon theophrasti) seeds. Weed Sci. 34:617622.CrossRefGoogle Scholar
59. Kremer, R. J. 1987. Identity and properties of bacteria inhabiting seeds of selected broadleaf weed species. Microb. Ecol. 14:2937.CrossRefGoogle ScholarPubMed
60. Kremer, R. J. and Kennedy, A. C. 1996. Rhizobacteria as biocontrol agents of weeds. Weed Technol. 10:601609.CrossRefGoogle Scholar
61. Kremer, R. J. and Schulte, L. K. 1989. Influence of chemical treatment and Fusarium oxysporum on velvetleaf. Weed Technol. 3:369374.CrossRefGoogle Scholar
62. Kremer, R. J. and Spencer, N. R. 1989. Impact of seed-feeding insect and microorganisms on velvetleaf (Abutilon theophrasti) seed viability. Weed Sci. 37:211216.CrossRefGoogle Scholar
63. Kremer, R. J., Begonia, MET., Stanley, L., and Lanham, E. T. 1990. Characterization of rhizobacteria associated with weed seedlings. Appl. Environ. Microbiol. 56:16491655.CrossRefGoogle ScholarPubMed
64. Lambert, B., Meire, P., Joos, H., Lens, P., and Swings, J. 1990. Fast-growing, aerobic, heterotrophic bacteria from the rhizosphere of young sugar beet plants. Appl. Environ. Microbiol. 56:33753381.CrossRefGoogle ScholarPubMed
65. Liddell, C. M. and Parke, J. L. 1989. Enhanced colonization of pea taproots by a fluorescent pseudomonad biocontrol agent by water infiltration into soil. Phytopathology 79:13271332.CrossRefGoogle Scholar
66. Loper, J. E., Haack, A., and Schroth, M. N. 1985. Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Appl. Environ. Microbiol. 49:416422.CrossRefGoogle ScholarPubMed
67. Loper, J. E. 1988. Role of fluorescent siderophore production in biological control of Phythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166172.CrossRefGoogle Scholar
68. Loper, J. E. and Ishimaru, C. A. 1991. p. 253261 in Keister, D. L. and Cregan, P. B., eds. The Rhizosphere and Plant Growth. Kluwer Academic Publishers, The Netherlands.CrossRefGoogle Scholar
69. Lynch, J. M. 1978. Microbial interaction around imbibed seeds. Ann. Appl. Biol. 89:165167.CrossRefGoogle Scholar
70. Lynch, J. M., ed. 1990. The Rhizosphere. John Wiley and Sons, New York. 458 p.Google Scholar
71. Maas, E. C. and Kotze, J. M. 1990. Crop rotation and take-all of wheat in South Africa. Soil Biol. Biochem. 22:489494.CrossRefGoogle Scholar
72. Mazzola, M. and Cook, R. J. 1991. Effects of fungal root pathogens on the population dynamics of biocontrol strains of fluorescent pseudomonads in the wheat rhizosphere. Appl. Environ. Microbiol. 57:21712178.CrossRefGoogle ScholarPubMed
73. Mazzola, M., Cook, R. J., Thomashow, L. S., Weller, D. M., and Pierson, L. S. III. 1992. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl. Environ. Microbiol. 58:26162624.CrossRefGoogle Scholar
74. Melting, E. B. Jr., ed. 1993. Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker, Inc., New York. 646 p.Google Scholar
75. Ogg, A. G. Jr., Young, F. L., Skipper, H. D., and Kennedy, A. C. 1991. Integrating rhizobacteria into management strategies for downy brome control in wheat. Rhizobacteria Prospects for Weed Management. National Workshop sponsored by ARS and Washington State Univ., Pullman, WA. p. 1213.Google Scholar
76. Rosenweig, W. D. and Stotzky, G. 1979. Influence of environmental factors on antagonisms of fungi by bacteria in soil clay minerals and pH. Appl. Environ. Microbiol. 38:11201126.CrossRefGoogle Scholar
77. Rovira, A. D. 1969. Plant root exudates. Bot. Rev. 35:3557.CrossRefGoogle Scholar
78. Rovira, A. D. 1979. Biology of the soil-root interface. p. 145160 in Harley, J. L. and Russell, R. S., eds. The Soil-root Interface. Academic Press, New York.CrossRefGoogle Scholar
79. Rovira, A. D. 1991. Rhizosphere research—85 years of progress and frustration. p. 313 in Keister, D. S. and Cregan, P. B., eds. The Rhizosphere and Plant Growth. Kluwer Academic Publishers, Boston.CrossRefGoogle Scholar
80. Rovira, A. D. and Davey, C. B. 1974. Biology of the rhizosphere. p. 153204 in Carson, E. W., ed. The Plant Root and Its Environment. Univ. Virginia Press. Charlottesville.Google Scholar
81. Rydrych, D. J. and Muzik, R.J. 1968. Downy brome competition and control in dryland wheat. Agron. J. 60:279280.CrossRefGoogle Scholar
82. Salt, G. A. 1979. The increasing interest in ‘minor pathogens.’ p. 289–213 in Schippers, B. and Gams, W., eds. Soil Borne Plant Pathogens. Academic Press, New York.Google Scholar
83. Sands, D. C. and Rovira, A. D. 1970. Isolation of fluorescent pseudomonads with a selective medium. Appl. Microbiol. 20:513514.CrossRefGoogle ScholarPubMed
84. Schippers, B., Bakker, A. W., and Bakker, P. A. 1987. Interaction of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25:339358.CrossRefGoogle Scholar
85. Schroth, M. N. and Hildebrand, D. C. 1964. Influence of plant exudates on root-infecting fungi. Annu. Rev. Phytopathol. 2:101132.CrossRefGoogle Scholar
86. Skipper, H. D., Kennedy, A. C., and Ogg, A. G. Jr. 1991. Pseudomonad survival and root colonization for suppression of downy brome. Agron. Abstr. 55:277.Google Scholar
87. Skipper, H. D., Kennedy, A. C., and Ogg, A. G. Jr. 1992. Survival of a bacterium for weed management in nine soils. Weed Sci. Soc. Am. Abstr. 32:51.Google Scholar
88. Stahlman, P. W. and Miller, S. D. 1990. Downy brome (Bromus tectorum) interference and economic thresholds in winter wheat (Triticum aestivum), Weed Sci. 38:224228.Google Scholar
89. Staley, T. E. and Drahos, D. J. 1994. Marking soil bacteria with lacZY. p. 689706 in Weaver, R. W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., and Wollum, A. G., eds. Methods of Soil Analysis, Part 2. Microbiological and Biochemical Properties. Soil Sci. Soc. Am. Book Series, no. 5. Madison, WI.CrossRefGoogle Scholar
90. Starkey, R. L. 1958. Interrelations between microorganisms and plant roots in the rhizosphere. Bacteriol. Rev. 22:154172.CrossRefGoogle ScholarPubMed
91. Stroo, H. F., Elliott, L. F., and Papendick, R. I. 1988. Growth, survival and toxin production of root-inhibitory pseudomonads on crop residues. Soil Biol. Biochem. 20:201207.CrossRefGoogle Scholar
92. Suslow, T. V., and Schroth, M. N. 1982. Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72:111115.CrossRefGoogle Scholar
93. Swan, D. G. and Whitesides, R. E. 1988. Downy brome (Bromus tectorum) control in winter wheat. Weed Technol. 2:481485.CrossRefGoogle Scholar
94. Tate, R. L. Jr. 1986. Importance of autecology in microbial ecology. p. 126 in Tate, R. L. Jr., ed. Microbial Autecology, John Wiley and Sons, Inc., New York.Google Scholar
95. Thill, D. C., Beck, K. G., and Callihan, R. H. 1984. The biology of downy brome (Bromus tectorum). Weed Sci. 32, Suppl. 1:712.CrossRefGoogle Scholar
96. Thomashow, L. S. and Weller, D. W. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyes graminis var. tritici . J. Bacteriol. 170:34993508.CrossRefGoogle ScholarPubMed
97. Thomashow, L. S. and Weller, D. M. 1990. Application of fluorescent pseudomonads to control root diseases of wheat and some mechanisms of disease suppression. p. 109122 in Hornby, D., ed. Biological Control of Soil-Borne Plant Pathogens. C.A.B. International, Oxon, U.K. Google Scholar
98. Timonin, M. I. 1946. Microflora of the rhizosphere in relation to the manganese-deficiency disease in oats. Soil Sci. Soc. Am. J. 11:284292.CrossRefGoogle Scholar
99. Tranel, P. J., Gealy, D. R., and Kennedy, A. C. 1993. Inhibition of downy brome (Bromus tectorum L.) root growth by a phytotoxin from Pseudomonas fluorescens strain D7. Weed Technol. 7:134139.CrossRefGoogle Scholar
100. Turco, R. F., Bischoff, M., Breakwell, D. P., and Griffith, D. R. 1990. Contribution of soil-borne bacteria to the rotation effect in corn. Plant Soil 122:115120.CrossRefGoogle Scholar
101. Van Peer, R., Punte, H.L.M., de Weger, L. A., and Schippers, B. 1990. Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots. Appl. Environ. Microbiol. 56:24622470.CrossRefGoogle ScholarPubMed
102. Van Vuurde, J.W.L. and Schippers, B. 1980. Bacterial colonization of seminal wheat roots. Soil Biol. Biochem. 12:559565.CrossRefGoogle Scholar
103. Weller, D. M. 1983. Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all. Phytopathology 73:15481553.CrossRefGoogle Scholar
104. Weller, D. M. 1984. Distribution of a take-all suppressive strain of Pseudomonas fluorescens on seminal roots of winter wheat. Appl. Environ. Microbiol. 48:897899.CrossRefGoogle ScholarPubMed
105. Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379407.CrossRefGoogle Scholar
106. Weller, D. M. and Cook, R. J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463469.CrossRefGoogle Scholar
107. Weller, D. M. and Cook, R. J. 1986. Increased growth of wheat by seed treatments with fluorescent pseudomonads, and implications of Pythium control. Can. J. Plant Pathol. 8:328334.CrossRefGoogle Scholar
108. Weller, D. M. and Cook, R. J. 1986. Suppression of root diseases of wheat by fluorescent pseudomonads and mechanisms of action. p. 99107 in Swinburne, T. R., ed., Iron, Siderophores and Plant Diseases. Plenum, New York.CrossRefGoogle Scholar
109. Woltz, S. S. 1978. Nonparasitic plant pathogens. Annu. Rev. Phytopathol. 6:403430.CrossRefGoogle Scholar
110. Wong, P. T. 1981. Biological control by cross-protection. p. 417431 in Asher, M. J. and Shipton, P. J., eds. Biology and Control of Take-all. Academic Press, New York.Google Scholar
111. Worzella, W. W. 1932. Root development in hardy and non-hardy winter wheat varieties. J. Am. Soc. Agron. 24:626637.CrossRefGoogle Scholar
112. Xu, G.-W. and Gross, D. C. 1986. Field evaluations of the interactions among fluorescent pseudomonads, Erwinia carotovora, and potato yields. Phytopathology 76:423430.CrossRefGoogle Scholar