Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T04:33:08.719Z Has data issue: false hasContentIssue false

Potential Pollen and Seed Production from Early- and Late-Emerging Common Ragweed in Corn and Soybean

Published online by Cambridge University Press:  20 January 2017

Marie-Josée Simard*
Affiliation:
Soils and Crops Research and Development Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Boulevard, Québec, QC G1V 2J3, Canada
Diane Lyse Benoit
Affiliation:
Horticulture Research and Development Centre, Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
*
Corresponding author's E-mail: marie-josee.simard@agr.gc.ca

Abstract

Despite the abundance of common ragweed in crops and the potency of ragweed pollen as an allergen, pollen production in agricultural fields has hardly been evaluated. Our goal was to evaluate pollen and seed production of early- (i.e., plants missed by weed control) and late- (i.e., after weed control) emerging common ragweed growing in corn and soybean. Allocation and gender distribution were also evaluated. The experiment included 2 yr (2008, 2009), three competition treatments, two seeding/emergence dates, three densities, and four replicates. Competition treatments (main plots) included no crop or weeds (bare), corn, or soybean. Crops were glyphosate resistant. Subplots were seeded with common ragweed before or after glyphosate application at densities of 1 (4 m−2), 3 (12 m−2), or 6 (24 m−2) plants per plot. Ragweed plants were harvested in mid-October and measured (aboveground biomass, length of all male inflorescences, stem diameter, and seed production). Based on our estimates, mean (backtransformed from ln[x + 1]) pollen production values were: 6.25 (bare), 0.74 (corn), and 1.13 (soybean) × 108 pollen grains per ragweed. Biomass and diameter were good predictors of ragweed male and female fitness. Plant height was not correlated with maleness. In crops, ragweed gender distribution was shifted toward maleness. Estimations indicate early-emerging (June 18 to 23) ragweed produced three times more pollen than late (July 7 to 11) plants.

A pesar de la abundancia de Ambrosia artemisiifolia en los cultivos y la potencia del polen de esta maleza como alérgeno, la producción del polen en campos agrícolas ha sido poco evaluada. Nuestro objetivo fue evaluar la producción de polen y semillas de plantas de A. artemisiifolia de emergencia temprana (ej. plantas que escaparon al control de malezas) y tardía (después del control de malezas) presentes en maíz y soya. También se evaluó la distribución de biomasa y energía según el género. El experimento incluyó dos años (2008 y 2009), tres tratamientos de competencia, dos fechas de siembra/emergencia, tres densidades y cuatro repeticiones. Los tratamientos de competencia (parcelas principales) incluyeron: ningún cultivo o maleza (descubierto); maíz o soya. Los cultivos fueron resistentes al glifosato. Las sub-parcelas se sembraron con A. artemisiifolia antes o después de las aplicaciones de glifosato a densidades de: 1 (4 m−2), 3 (12 m−2) o 6 (24 m−2) plantas por parcela. Las plantas de A. artemisiifolia se cosecharon a mediados de octubre y se midió la biomasa aérea, el largo de todas las inflorescencias masculinas, el diámetro del tallo y la producción de semillas. Basado en nuestras estimaciones, los valores medios de producción de polen (retro-transformados de In (x+1)), fueron 6.25 (descubierto), 0.74 (maíz) y 1.13 (soya) × 108 granos de polen por planta de A. artemisiifolia. La biomasa y el diámetro fueron buenos indicadores del vigor masculino y femenino de la maleza. La altura de la planta no estuvo correlacionada con la masculinidad. En cultivos, la distribución de género de A. artemisiifolia fue desplazada hacia la masculinidad. Las estimaciones indican que plantas que emergieron temprano (junio 18 a 23) produjeron tres veces más polen que las que emergieron tarde (julio 7 al 11).

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackerly, D. D. and Jasienski, M. 1990. Size-dependent variation of gender in high density stands of the monoecious annual, Ambrosia artemisiifolia (Asteraceae). Oecologia 82:474477.Google Scholar
Barbour, B. and Meade, J. A. 1981. The effect of cutting date and height on anthesis of common ragweed Ambrosia artemisiifolia (L.). Proc. Northeastern Weed. Sci. Soc. 35:8286.Google Scholar
Basset, I. J. and Crompton, R. W. 1975. The biology of Canadian weeds. 11. Ambrosia artemisiifolia L; and. A. psilostachya DC. Can. J. Plant Sci. 55:463476.Google Scholar
Bouchard, C. J. 2006. L'herbe à poux, une espèce nuisible. Ministère de l'Agriculture des Pêcheries et de l'Alimentation du Québec, Direction des services technologiques, Québec.Google Scholar
Chandler, K., Shrestha, A., and Swanton, C. J. 2001. Weed seed return as influenced by the critical weed-free period and row spacing of no-till glyphosate-resistant soybean. Can. J. Plant Sci. 81:877880.Google Scholar
Chen, H., Chen, L., and Albright, T. P. 2007. Predicting the potential distribution of invasive exotic species using GIS and information-theoretic approaches: a case of ragweed (Ambrosia artemisiifolia L.) distribution in China. Chinese Sci. Bull. 52:12231230.Google Scholar
Chikoye, D., Weise, S. F., and Swanton, C. J. 1995. Influence of common ragweed (Ambrosia artemisiifolia) time of emergence and density on white bean (Phaseolus vulgaris). Weed Sci. 43:375380.Google Scholar
Collins-Williams, C. and Best, C. A. 1955. Atmospheric pollen counts in Toronto Canada. J. Allergy 26:461467.Google Scholar
Comptois, P. 1990. Variations temporelles et spatiales de l'indice pollinique de l'herbe à poux (Ambrosia sp.). Naturaliste Can. (rev. Écol. Syst.) 117:199202.Google Scholar
Delabays, N., Bohren, C., Mermillod, G., Keimer, C., and Kündig, C. 2005. L'ambroisie à feuilles d'armoise (Ambrosia artemisiifolia L.) en Suisse: aspects malherbologiques. Rev. Suisse Agric. 37:1724.Google Scholar
Deslauriers, S. 1992. Répression mécanique de la petite herbe à poux (Ambrosia artemisiifolia) en milieu urbain et pré-urbain, travail de maîtrise en science de l'environnement. Université du Québec à Trois-Rivières, 124 p.Google Scholar
Dickerson, C. T. and Sweet, R. D. 1971. Common ragweed ecotypes. Weed Sci. 19:6466.Google Scholar
Frei, T. 2009. Trend reversal in pollinosis and airborne pollen distribution? Allergologie 32:123127.Google Scholar
Fumanal, B., Chauvel, B., and Bretagnolle, F. 2007. Estimation of pollen and seed production of common ragweed in France. Ann. Agric. Environ. Med. 14:233236.Google Scholar
Gergen, P. J., Turkeltaub, P. C., and Kovar, M. G. 1987. The prevalence of allergic skin test reactivity to eight common aeroallergens in the U.S. population: results from the second National Health and Nutrition Examination Survey. J. Allergy Clin. Immunol. 80:669679.Google Scholar
Groh, H. and Minshall, W. H. 1940. The ragweed situation in Eastern Canada in relation to hay fever. Can. Med. Assoc. J. 43:258260.Google Scholar
Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., and Strachan, I. B. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90:337352.Google Scholar
Heap, I. 2011. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: August 5, 2011.Google Scholar
Héguy, L., Garneau, M., Goldberg, M. S., Raphoz, M., Guay, F., and Valois, M-F. 2008. Associations between grass and weed pollen and emergency department visits for asthma among children in Montreal. Environ. Res. 106:203211.Google Scholar
Holmes, R. M. and Basset, I. J. 1963. Effect of meteorological events on ragweed pollen count. Int. J. Biometeor. 7:2734.Google Scholar
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.Google Scholar
Knox, B. and Suphioglu, C. 1996. Environmental and molecular biology of pollen allergens. Trends Plant Sci. 1:156164.Google Scholar
Linneberg, A. 2011. The increase in allergy and extended challenges. Allergy 66(Suppl. 95):13.Google Scholar
Lloyd, D. G. 1980. Sexual strategies in plants. III. A quantitative method for describing the gender of plants. New Zeal. J. Bot. 18:103108.Google Scholar
McKone, M. J. and Tonkyn, D. W. 1986. Intrapopulation gender variation in common ragweed (Asteraceae: Ambrosia artemisiifolia L.), a monoecious, annual herb. Oecologia 70:367.Google Scholar
Mertens, S. K. and Jansen, J. H. 2002. Weed seed production, crop planting pattern, and mechanical weeding in wheat. Weed Sci. 50:748756.Google Scholar
Paquin, V. and Aarssen, L. W. 2004. Allometric gender allocation in Ambrosia artemisiifolia (Asteraceae) has adaptive plasticity. Am. J. Bot. 91:430438.Google Scholar
Payne, W. W. 1963. The morphology of the inflorescence of ragweeds (Ambrosia-Franseria: Compositae). Am. J. Bot. 50:872880.Google Scholar
Radosevich, S. R., Holt, J. S., and Ghersa, C. 1997. Weed Ecology: Implications for Management (2nd ed.). New York John Wiley & Sons.Google Scholar
Raynal, D. J. and Bazzaz, F. A. 1975. Interference of winter annuals with Ambrosia artemisiifolia in early successional fields. Ecology 56:3549.Google Scholar
Rogers, C. A., Wayne, P. M., Macklin, E. A., Muilenberg, M. L., Wagner, C. J., Epstein, P. R., and Bazzaz, F. A. 2006. Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ. Health Perspect. 1146:865869.Google Scholar
Scursoni, J. A., Forcella, F., and Gunsolus, J. 2007. Weed escapes and delayed emergence in glyphosate-resistant soybean. Crop Prot. 26:212218.Google Scholar
Simard, M-J. and Benoit, D. L. 2010. Distribution and abundance of an allergenic weed, common ragweed (Ambrosia artemisiifolia L.), in rural settings of southern Québec, Canada. Can J. Plant Sci 90:549557.Google Scholar
Simard, M-J. and Benoit, D. L. 2011. The effect of repetitive mowing on common ragweed (Ambrosia artemisiifolia L.) pollen and seed production. Ann. Agric. Environ. Med. 18:5562.Google Scholar
Simard, M-J., Panneton, B., Longchamps, L., Lemieux, C., Légère, A., and Leroux, G. D. 2009. Validation of a management program based on a weed cover threshold model: effects on herbicide use and weed populations. Weed Sci. 57:187193.Google Scholar
Taramaracaz, P., Lambelet, C., Clot, B., Keimerand, C., and Hauser, C. 2005. Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med. Wkly. 135:538548.Google Scholar
Toole, E. H. and Brown, E. 1946. Final results of the Durvel buried seed experiment. J. Agric. Res. 72:201210.Google Scholar
Traveset, A. 1992. Sex expression in a natural population of the monoecious annual, Ambrosia artemisiifolia (Asteraceae). Am. Mid. Nat. 127:309315.Google Scholar
Týr, Š., Vereš, T., and Lacko-Bartošová, M. 2009. Occurrence of common ragweed (Ambrosia artemisiifolia L.) in field crops in the Slovak Republic. Herbologia 10:19.Google Scholar
[USDA] U.S. Department of Agriculture. 1970. Selected weeds of the United States. Agriculture Handbook no. 36. Washington, DC United State Department of Agriculture.Google Scholar
Vincent, G. and Ahmim, M. 1985. Note sur le comportement de l'Ambrosia artemisiifolia après fauchage. Phytoprotection 66:165168.Google Scholar
Weaver, S. E. 2001. Impact of lamb's-quarters, common ragweed and green foxtail on yield of corn and soybean in Ontario. Can. J. Plant Sci. 81:821828.Google Scholar
Wilson, B. J., Wright, K. J., Brain, P., Clements, M., and Stephens, E. 1995. Predicting the competitive effects of weed and crop density on weed biomass, weed seed production and crop yield in wheat. Weed Res. 35:265278.Google Scholar