Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T12:43:30.476Z Has data issue: false hasContentIssue false

Maize Landraces are Less Affected by Striga hermonthica Relative to Hybrids in Western Kenya

Published online by Cambridge University Press:  20 January 2017

Charles A. O. Midega*
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
John Pickett
Affiliation:
Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K.
Antony Hooper
Affiliation:
Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K.
Jimmy Pittchar
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
Zeyaur R. Khan
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
*
Corresponding author's E-mail: cmidega@icipe.org.

Abstract

Production of maize in western Kenya is severely constrained by the parasitic weed striga. Although productivity of maize can be improved through adoption of improved varieties, adoption of such varieties remains low in the region, as the majority of smallholder farmers still grow unimproved open-pollinated varieties (landraces). The performance of two improved hybrid varieties was evaluated against six landraces in striga-infested soils in western Kenya. The varieties were planted in plots under natural striga infestation and were supplemented with pot experiments under artificial infestation. Striga emergence was lower in landraces than in the hybrid varieties in both field and pot experiments. Similarly, height of maize plants at harvest and grain yields were higher in the landraces than in the hybrids. After three continuous cropping seasons, in all treatments, striga seedbank density increased two to seven times. Seedbank increase was higher with hybrids and two of the landraces, ‘Rachar' and ‘Endere'. These results provide an insight into the potential role landraces could play in efforts toward an integrated management approach for striga in smallholder cropping systems. They also highlight the need to develop hybrid maize lines with local adaptation to biotic constraints, specifically striga.

La producción de maíz en el oeste de Kenya está severamente limitada por la maleza parasítica Striga hermonthica. Aunque la productividad del maíz puede ser incrementada con la adopción de variedades mejoradas, la adopción de estas variedades sigue siendo baja en la región, ya que la mayoría de los pequeños productores todavía producen variedades no-mejoradas de polinización abierta (autóctonas). El desempeño de dos variedades mejoradas híbridas fue evaluado y comparado con seis variedades autóctonas en campos infestados con S. hermonthica en el oeste de Kenya. Las variedades fueron sembradas en parcelas con infestaciones naturales de S. hermonthica y en potes con infestaciones artificiales. La emergencia de S. hermonthica fue más baja con variedades autóctonas que con híbridos. Después de tres temporadas continuas de producción, la densidad del banco de semillas de S. hermonthica aumentó de dos a siete veces en todos los tratamientos. El aumento del banco de semillas fue mayor con variedades híbridas y con las autóctonas 'Rachar' y 'Endere'. Estos resultados brindan una idea del rol potencial que pueden jugar las variedades autóctonas en los esfuerzos para el manejo integrado de S. hermonthica en sistemas de cultivos de pequeños productores. Además, los resultados resaltan la necesidad de desarrollar líneas híbridas de maíz con adaptaciones a las limitaciones bióticas locales, especialmente S. hermonthica.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Ramon G. Leon, University of Florida.

References

Literature Cited

Aquino, P, Carrion, F, Calvo, R, Flores, D (2001) Selected maize statistics. Pages 4557 in Pingali, PL, ed. CIMMYT 1999–2000. World Maize Facts and trends. Meeting World Maize Needs: Technological Opportunities and Priorities for the Public Sector. Mexico, DF, Mexico: CIMMYT Google Scholar
Bellon, MR (2001) The ethno-ecology of maize variety management: a case study from Mexico. Human Ecol 19:389418 Google Scholar
Bellon, MR, Adato, M, Becerril, J, Mindek, D (2006) Poor farmers' perceived benefits from different types of maize germplasm: the case of creolization in lowland tropical Mexico. World Dev 34:113129 Google Scholar
Berner, DK, Kling, JG, Singh, BB (1995) Striga research and control: a perspective from Africa. Plant Dis 79:652660 Google Scholar
Byerlee, D, Heisey, PW (1997) Evolution of the African maize economy. Pages 922 in Eicher, CK, Byerlee, D, eds. Africa's Emerging Maize Revolution. Boulder, CO: Lynne Rienner.Google Scholar
Cairns, JE, Hellin, J, Sonder, K, Araus, JL, MacRobert, JF, Thierfelder, C, Prasanna, BM (2013) Adapting maize production to climate change in sub-Saharan Africa. Food Secur 5:345360 Google Scholar
Chen, YH, Gols, R, Benrey, B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:3558 Google Scholar
Ejeta, G, Mohammed, A, Rich, P, Melake Berhan, A, Housley, TL, Hess, DE (2000) Selection for specific mechanisms for resistance to Striga in sorghum. Pages 2940 in Haussmann, BIG, Hess, DE, Koyama, ML, Grivet, L, Rattunde, HFW, Geiger, HH, eds. Proceedings of a Workshop on Breeding for Striga Resistance in Cereals, International Institute of Tropical Agriculture, Ibadan. Weikersheim, Germany: Margraf Verlag Google Scholar
Eplee, RE (1976) Determination of Striga seeds in soil. Whiteville, NC: U.S. Department of Agriculture Witchweed Laboratory. 112 pGoogle Scholar
[FAO] Food and Agriculture Organization of the United Nations (2010) Food Security Statistics. http://www.fao.org/economic/ess/food-security-statistics/en/. Accessed April 12, 2015Google Scholar
Gressel, J, Hanafi, A, Head, G, Marasas, W, Obilana, AB, Ochanda, J, Souissi, T, Tzotzos, G (2004) Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Prot 23:661689 Google Scholar
Haussmann, BIG, Hess, DE, Welz, HG, Geiger, HH (2000) Improved methodologies for breeding Striga-resistant sorghums. Field Crops Res 66:195211 Google Scholar
Hess, DE, Ejeta, G, Butler, LG (1992) Selecting sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga . Phytochemistry 31:493497 Google Scholar
Kanampiu, F, Friesen, D, Gressel, J (2002) CIMMYT unveils herbicide-coated maize seed technology for Striga control. Haustorium 42:13 Google Scholar
Kanampiu, F, Kabambe, V, Massawe, C, Jasi, L, Friesen, D, Ransom, JK, Gressel, J (2003) Multi-site, multi-season field tests demonstrate that herbicide seed-coating herbicide-resistance maize controls Striga spp. and increases yields in several African countries. Crop Prot 22: 697706 Google Scholar
Khan, ZR, Midega, CAO, Amudavi, DM, Hassanali, A, Pickett, JA (2008a) On-farm evaluation of the ‘push–pull' technology for the control of stemborers and striga weed on maize in western Kenya. Field Crops Res 106:224233 Google Scholar
Khan, ZR, Midega, CAO, Pittchar, JO, Murage, AW, Birkett, MA, Bruce, TJA, Pickett, JA (2014) Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Phil Trans Royal Soc B 369:20120284 Google Scholar
Khan, ZR, Pickett, JA, Hassanali, A, Hooper, AM, Midega, CAO (2008b) Desmodium species and associated biochemical traits for controlling Striga species: present and future prospects. Weed Res 48:302306 Google Scholar
Mathenge, MK, Smale, M, Olwande, J (2012) The impact of maize hybrids on income, poverty, and inequality among smallholder farmers in Kenya. MSU International Development Working Paper 126. East Lansing, Michigan: Department of Agricultural, Food, and Resource Economics and Department of Economics, Michigan State University. 42 p. http://fsg.afre.msu.edu/papers/idwp126.pdf. Accessed April 18, 2015Google Scholar
Midega, CAO, Salifu, D, Bruce, TJ, Pittchar, J, Pickett, JA, Khan, ZR (2014) Cumulative effects and economic benefits of intercropping maize with food legumes on Striga hermonthica infestation. Field Crops Res 155:144152 Google Scholar
Mucheru-Muna, M, Mugendi, D, Pypers, P, Mugwe, J, Kung'u, J, Vanlauwe, B, Merckx, R (2014) Enhancing maize productivity and profitability using organic inputs and mineral fertilizer in central Kenya small-hold farms. Exp Agric 50: 250269 Google Scholar
Ndung'u, D, Odhiambo, GD, Ransom, JK (1993) Methodology for quantifying Striga seed numbers in soils of East Africa. Pages 220221 in African Crop Science Conference Proceedings, Kampala, Uganda. Toronto, Ontario University of Toronto Scarborough Google Scholar
Oswald, A (2005) Striga control technologies and their dissemination. Crop Prot 24: 333342 Google Scholar
Parker, C, Riches, CR (1993) Parasitic Weeds of the World: Biology and Control. Wallingford, UK: CAB International. 332 pGoogle Scholar
Pickett, JA, Hamilton, ML, Hooper, AM, Khan, ZR, Midega, CAO (2010) Companion cropping to manage parasitic plants. Annu Rev Phytopathol 48:161177 Google Scholar
R Development Core Team (2014) R: A Language and Environment for Statistical Computing. http://www.R-project.org/. Accessed March 12, 2015Google Scholar
Sauerborn, J (1991) Parasitic Flowering Plants—Ecology and Management. Weikersheim, Germany: Josef Margraf. 127 pGoogle Scholar
Schroeder, C, Onyango K'Oloo, T, Nar Bahadur, R, Jick, NA, Parzies, HK, Gemenet, DC (2013) Potentials of hybrid maize varieties for smallholder farmers in Kenya: a review based on swot analysis. Afr J Food Agric Nutr Dev 13:75627582 Google Scholar
Smale, M, Olwande, J (2014) Demand for maize hybrids and hybrid change on smallholder farms in Kenya. Agric Econ 45:409420 Google Scholar
Tamiru, A, Bruce, TJA, Woodcock, CM, Caulfield, JC, Midega, CAO, Ogol, CKPO, Mayon, P, Birkett, MA, Pickett, JA, Khan, ZR (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol Lett 14:10751083 Google Scholar
Van Ast, A, Bastiaans, L, Kropff, MJ (2000) A comparative study on Striga hermonthica interaction with a sensitive and a tolerant sorghum cultivar. Weed Res 40:479493 Google Scholar
Vanlauwe, B, Kanampiu, F, Odhiambo, G, De Groote, H, Wadhams, LJ, Khan, ZR (2008) Integrated management of Striga hermonthica, stemborers, and declining soil fertility in western Kenya. Field Crops Res 107:102115 Google Scholar