Published online by Cambridge University Press: 18 August 2020
Overreliance on herbicides for weed control has led to the evolution of herbicide-resistant Palmer amaranth populations. Farm managers should consider the long-term consequences of their short-term management decisions, especially when considering the soil weed seedbank. The objectives of this research were to (1) determine how soybean population and POST herbicide application timing affects in-season Palmer amaranth control and soybean yield, and (2) how those variables influence Palmer amaranth densities and cotton yields the following season. Soybeans were planted (19-cm row spacing) at a low-, medium-, and high-density population (268,000, 546,000, and 778,000 plants ha–1, respectively). Fomesafen and clethodim (280 and 210 g ai ha–1, respectively) were applied at the VE, V1, or V2 to V3 soybean growth stage. Nontreated plots were also included to assess the effect of soybean population alone. The following season, cotton was planted into these plots so as to understand the effects of soybean planting population on Palmer amaranth densities in the subsequent crop. When an herbicide application occurred at the V1 or V2 to V3 soybean stage, weed control in the high-density soybean population increased 17% to 23% compared to the low-density population. Economic return was not influenced by soybean population and was increased 72% to 94% with herbicide application compared to no treatment. In the subsequent cotton crop, Palmer amaranth densities were 24% to 39% lower 3 wk after planting when following soybean sprayed with herbicides compared to soybean without herbicides. Additionally, Palmer amaranth densities in cotton were 19% lower when soybean was treated at the VE stage compared to later stages. Thus, increasing soybean population can improve Palmer amaranth control without adversely affecting economic returns and can reduce future weed densities. Reducing the weed seedbank and selection pressure from herbicides are critical in mitigating resistance evolution.
Associate Editor: Kevin Bradley, University of Missouri
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.