Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T03:31:17.006Z Has data issue: false hasContentIssue false

The Impact of Spray Droplet Size on the Efficacy of 2,4-D, Atrazine, Chlorimuron-Methyl, Dicamba, Glufosinate, and Saflufenacil

Published online by Cambridge University Press:  20 January 2017

Cody F. Creech
Affiliation:
Department of Agronomy and Horticulture, Panhandle Research and Extension Center, University of Nebraska-Lincoln, Scottsbluff, NE 69357
Jesaelen G. Moraes
Affiliation:
College of Agricultural Sciences, São Paulo State University, Botucatu, SP, Brazil 18610-307
Ryan S. Henry
Affiliation:
Department of Agronomy and Horticulture, West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE 69101
Joe D. Luck
Affiliation:
Biological Systems Engineering Department, University of Nebraska-Lincoln, Chase Hall, Lincoln, NE 68583
Greg R. Kruger*
Affiliation:
Department of Agronomy and Horticulture, West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE 69101
*
Corresponding author's E-mail: gkruger2@unl.edu.

Abstract

Herbicide applications often do not reach their full potential because only a small amount of the active ingredients reaches the intended targets. Selecting the appropriate application parameters and equipment can allow for improved efficacy. The objective of this research was to evaluate the effect of droplet size on efficacy of six commonly used herbicides. Atrazine (1.12 kg ai ha−1), cloransulam-methyl (0.18 g ai ha−1), dicamba (0.14 kg ae ha−1), glufosinate (0.59 kg ai ha−1), saflufenacil (12.48 g ai ha−1), and 2,4-D (0.20 kg ae ha−1) were applied to seven plant species using an XR11003 nozzle at 138, 276, and 414 kPa and a AI11003 nozzle at 207, 345, and 483 kPa. Each herbicide, nozzle, and pressure combination was evaluated for droplet size spectra. Treatments were applied at 131 L ha−1 to common lambsquarters, common sunflower, shattercane, soybean, tomato, velvetleaf, and volunteer corn. Control from 2,4-D was observed to increase approximately 12% on average for all species except common lambsquarters as droplet size increased from medium to very coarse (Dv0.5 303 to 462 μm; Dv0.5 is droplet size such that 50% of spray volume is contained in droplets of equal or smaller size). Control with atrazine was near 95% for common lambsquarters, common sunflower, and soybean. Atrazine provided the greatest shattercane control using a medium (Dv0.5 325 μm) droplet, whereas the same droplet size provided the lowest tomato control. Control of common lambsquarters, shattercane, and tomato with cloransulam-methyl increased 79% when decreasing droplet size from extremely coarse to fine (Dv0.5 637 to 228 μm). Dicamba control of common lambsquarters increased 17% using a medium droplet compared with a fine droplet (Dv0.5 279 to 204 μm). Dry weight of common sunflower and soybean was reduced 21% using dicamba when using a very coarse spray compared with a fine spray classification (Dv0.5 491 to 204 μm). Common lambsquarters control using glufosinate increased 18% using a fine spray classification (Dv0.5 186 μm) compared with medium (Dv0.5 250 μm) and both very coarse droplet sizes (Dv0.5 470 and 516 μm). Conversely, tomato and velvetleaf control with glufosinate was maximized using a very coarse (Dv0.5 470 and 516 μm) or extremely coarse droplet (Dv0.5 628 μm) with increases of 11 and 25% compared with a fine spray (Dv0.5 186 μm). Saflufenacil control of volunteer corn was 38% greater using extremely coarse droplets (Dv0.5 622 μm) than fine, medium, and very coarse spray classifications (Dv0.5 257 to 514 μm). Overall, spray classifications for the herbicides evaluated play an important role in herbicide efficacy and should be tailored to the herbicide being used and the targeted weed species.

Las aplicaciones de herbicidas a menudo no alcanzan su máximo potencial porque solamente una pequeña cantidad de los ingredientes activos alcanzan los objetivos deseados. El seleccionar los parámetros de aplicación y equipo apropiados puede permitir una mejora en la eficacia. El objetivo de esta investigación fue evaluar el efecto del tamaño de gota sobre la eficacia de seis herbicidas de uso común. Atrazine (1.12 kg ai ha−1), cloransulam-methyl (0.18 g ai ha−1), dicamba (0.14 kg ae ha−1), glufosinate (0.59 kg ai ha−1), saflufenacil (12.48 g ai ha−1), y 2,4-D (0.20 kg ae ha−1) fueron aplicados a siete especies de plantas usando una boquilla XR11003 a 138, 276, y 414 kPa y una boquilla AI11003 a 207, 345, y 483 kPa. Cada herbicida, boquilla, y combinación de presión fue evaluada para determinar el espectro de tamaño de gota. Los tratamientos fueron aplicados a 131 L ha−1 a Chenopodium album, girasol, Sorghum bicolor ssp. arundinaceum, soja, tomate, Abutilon theophrasti, y maíz voluntario. Se observó que el control con 2,4-D aumentó en promedio aproximadamente 12% para todas las especies, excepto para C. album, al aumentarse el tamaño de gota de medio a muy grande (Dv0.5 303 a 462 μm; Dv0.5 es el tamaño de gota al cual el 50% del volumen de aplicación es contenido en gotas de igual o menor tamaño). El control con atrazine fue cercano al 95% para C. album, girasol, y soja. Atrazine brindó el mayor control de S. bicolor usando gotas de tamaño mediano (Dv0.5 325 μm), mientras que el mismo tamaño de gota brindó el menor control de tomate. El control de C. album, S. bicolor, y tomate con cloransulam-methyl aumentó 79% cuando disminuyó el tamaño de gota de extremadamente grande a fino (Dv0.5 637 a 228 μm). El control de C. album con dicamba aumentó 17% usando gotas medianas al compararse con gotas finas (Dv0.5 279 a 204 μm). El peso seco del girasol y la soja se redujo 21% con dicamba cuando se asperjó con gotas muy grandes al compararse con la clasificación fina (Dv0.5 491 a 204 μm). El control de C. album con glufosinate aumentó 18% usando la clasificación fina de aspersión (Dv0.5 186 μm) al compararse con los tamaños de gota mediano (Dv0.5 250 μm) y las dos clasificaciones muy grande (Dv0.5 470 y 516 μm). En cambio, el control del tomate y A. theophrasti con glufosinate fue maximizado al usar gotas de tamaño muy grande (Dv0.5 470 y 516 μm) o extremadamente grande (Dv0.5 628 μm) con incrementos de 11 y 25% al compararse con la aspersión fina (Dv0.5 186 μm). El control de maíz voluntario con saflufenacil fue 38% mayor al usarse gotas extremadamente grandes (Dv0.5 622 μm) que con las clasificaciones de aspersión fina, mediana, y muy grande (Dv0.5 257 y 514 μm). En general, las clasificaciones de aspersión para los herbicidas evaluados juegan un rol importante en la eficacia del herbicida y deberían ser escogidas según el herbicida a usar y las especies de malezas que se desean controlar.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: William Johnson, Purdue University.

References

Literature Cited

Anonymous (2013) Clarity herbicide product label. Research Triangle Park, NC: BASF Corporation. 22 pGoogle Scholar
[ASABE] American Society of Agricultural and Biological Engineers (2009) Spray nozzle classification by droplet spectra. St. Joseph, MI: American Society of Agricultural Engineers. 3 pGoogle Scholar
Benbrook, CM (2012) Impacts of genetically engineered crops on pesticide use in the US—the first sixteen years. Environ Sci Eur 24:113 Google Scholar
Bird, SL, Esterly, DM, Perry, SG (1996) Off-target deposition of pesticides from agricultural aerial spray applications. J. Environ. Qual 25:10951104 Google Scholar
Burnham, KP, Anderson, DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York: Springer-Verlag. 488 pGoogle Scholar
Carlsen, S, Spliid, NH, Svensmark, B (2006) Drift of 10 herbicides after tractor spray application. 2. Primary drift (droplet drift). Chemosphere 64:778786 Google Scholar
Combellack, J (1984) Herbicide application: a review of ground application techniques. Crop Prot 3:934 Google Scholar
Creech, CF, Henry, RS, Fritz, BK, Kruger, GR (2015a) Influence of herbicide active ingredient, nozzle type, orifice size, spray pressure, and carrier volume rate on spray droplet size characteristics. Weed Technol 29:298310 Google Scholar
Creech, CF, Henry, RS, Werle, R, Sandell, LD, Hewitt, AJ, Kruger, GR (2015b) Performance of post-emergent herbicides applied at different carrier volume rates. Weed Technol 29:611624 Google Scholar
Derksen, RC, Coffmann, CW, Jiang, C, Gulyas, SW (1999) Influence of hooded and air-assist vineyard applications on plant and worker protection. Anglais 42:3136 Google Scholar
Ennis, W, Williamson, RE (1963) Influence of droplet size on effectiveness of low-volume herbicidal sprays. Weeds 11:6772 Google Scholar
Etheridge, RE, Hart, WE, Hayes, RM, Mueller, TC (2001) Effect of venturi-type nozzles and application volume on postemergence herbicide efficacy. Weed Technol 15:7580 Google Scholar
Etheridge, RE, Womac, AR, Mueller, TC (1999) Characterization of the spray droplet spectra and patterns of four venturi-type drift reduction nozzles. Weed Technol 13:765770 Google Scholar
Feng, PC, Chiu, T, Sammons, RD, Ryerse, JS (2003) Droplet size affects glyphosate retention, absorption, and translocation in corn. Weed Sci 51:443448 Google Scholar
Forster, WA, van Leeuwen, RM (2010) Characterisation of forest weed species and herbicide formulations to predict droplet adhesion and optimise spray retention. Pages 348351 in Proceedings of the 17th Australian Weeds Conference. Christchurch, New Zealand New Zealand Plant Protection Society Google Scholar
Fritz, BK, Hoffmann, WC, Bagley, WE, Kruger, GR, Czaczyk, Z, Henry, RS (2014) Measuring drop size of agricultural spray nozzles—measurement distance and airspeed effects. Atomization Spray 24:474760 Google Scholar
Harr, J, Guggenheim, R, Schulke, G, Falk, R (1991) The leaf surface of major weeds. Basel, Switzerlan: Sandoz Agro Ltd Google Scholar
Hislop, E (1987) Requirements for effective and efficient pesticide application. Pages 5371 in Brent, KJ, Atkin, RK, eds. Rational Pesticide Use. Cambridge, UK: Cambridge University Press Google Scholar
Knoche, M (1994) Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Prot 13:163178 Google Scholar
Littell, RC, Milliken, GA, Stroup, WW, Wolfinger, RD, Schabenberger, O (2006) SAS for Mixed Models. 2nd edn. Cary, NC: SAS institute. 780 pGoogle Scholar
McKinlay, K, Brandt, S, Morse, P, Ashford, R (1972) Droplet size and phytotoxicity of herbicides. Weed Sci 20:450452 Google Scholar
Merritt, CR, Taylor, WA (1977) Glasshouse trials with controlled drop application of some foliage-applied herbicides. Weed Res 17:241245 Google Scholar
Nairn, J, Forster, W, Van Leeuwen, R, Zydenbos, S (2014) Influence of spray formulation surface tension on spray droplet adhesion and shatter on hairy leaves. N Z Plant Prot 67:278283 Google Scholar
Nuyttens, D, De Schampheleire, M, Baetens, K, Sonck, B (2007) The influence of operator-controlled variables on spray drift from field crop sprayers. Trans Am Soc Agric Eng 50:11291140 Google Scholar
Prokop, M, Veverka, K (2003) Influence of droplet spectra on the efficiency of contact and systemic herbicides. Plant Soil Environ 49:7580 Google Scholar
Radosevich, SR, Ghersa, CM, Comstock, G (1992) Concerns a weed scientist might have about herbicide-tolerant crops. Weed Technol 6:635639 Google Scholar
Ramsdale, BK, Messersmith, CG (2001) Drift-reducing nozzle effects on herbicide performance Weed Technol 15:453460 Google Scholar
Schou, W, Forster, W, Mercer, G, Teske, M, Thistle, H (2012) Building canopy retention into AGDISP: preliminary models and results. Trans Am Soc Agric Eng 55:20592066 Google Scholar
Sikkema, PH, Brown, L, Shropshire, C, Spieser, H, Soltani, N (2008) Flat fan and air induction nozzles affect soybean herbicide efficacy. Weed Biol Manag 8:3138 Google Scholar
Weidenhamer, J, Triplett, G, Sobotka, F (1989) Dicamba injury to soybean. Agron J 81:637643 Google Scholar
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301307 Google Scholar
Zhu, H, Dorner, J, Rowland, D, Derksen, R, Ozkan, H (2004) Spray penetration into peanut canopies with hydraulic nozzle tips. Biosyst Eng 87:275283 Google Scholar