Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T07:04:47.310Z Has data issue: false hasContentIssue false

Herbicidal Performance of Phenyl Isothiocyanate in Polyethylene-Mulched Bell Pepper

Published online by Cambridge University Press:  20 January 2017

Sanjeev K. Bangarwa
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Edward E. Gbur
Affiliation:
Agricultural Statistics Laboratory, University of Arkansas, 101 Agricultural Annex Building, Fayetteville, AR 72701
*
Corresponding author's E-mail: jnorswor@uark.edu

Abstract

Methyl bromide is a common fumigant for effective weed control in polyethylene-mulched vegetable crops. However, the ban on methyl bromide in the United States has created a need to find a suitable alternative. This study investigated the herbicidal efficacy of phenyl isothiocyanate (ITC) as a methyl bromide alternative for weed control in polyethylene-mulched bell pepper during 2006 and 2007. Six rates of phenyl ITC (0, 15, 75, 150, 750, 1,500 kg ha−1) under low-density polyethylene (LDPE) or virtually impermeable film (VIF) mulch were tested against yellow nutsedge, Palmer amaranth, and large crabgrass. Additionally, a standard treatment of methyl bromide/chloropicrin (67 : 33%) at 390 kg ha−1 under LDPE mulch was included for comparison. VIF mulch provided no advantage over LDPE mulch in either improving weed control or marketable yield in bell pepper. Unacceptable pepper injury (≥ 60%) occurred at the highest phenyl ITC rate of 1,500 kg ha−1 at 2 WATP in both years, regardless of mulch type. Higher bell pepper injury was observed in 2006 (≥ 36%) than in 2007 (≤ 11%) at 750 kg ha−1 of phenyl ITC. The lower injury in 2007 could be attributed to aeration of beds 48 h prior to transplanting. Regardless of mulch type, phenyl ITC at 2,071 (± 197) and 1,655 (± 309) kg ha−1 was required to control yellow nutsedge, Palmer amaranth, and large crabgrass equivalent to methyl bromide in 2006 and 2007, respectively. Bell pepper marketable yield at all rates of phenyl ITC was lower than methyl bromide in 2006. In contrast, marketable yield in phenyl ITC at 750–kg ha−1 was equivalent to methyl bromide in 2007. It is concluded that phenyl ITC should be applied at least 4.2 times higher rate than methyl bromide for effective weed control, and bed aeration is required to minimize crop injury and yield loss. Additional research is needed to test phenyl ITC in combination with other weed control strategies to obtain effective weed control with acceptable crop safety.

Methyl bromide es un fumigante común para el control efectivo de malezas en la producción de vegetales con coberturas plásticas. Sin embargo, la prohibición de este fumigante en los Estados Unidos ha creado la necesidad de encontrar una alternativa apropiada. Este estudio investigó la eficacia como herbicida de phenyl isothiocyanate (ITC) como alternativa a methyl bromide para el control de malezas en chile (pimiento) producido con cobertura de polyethylene durante 2006 y 2007. Seis dosis de phenyl ITC (0, 15, 75, 150, 750 y 1500 kg ha−1) bajo una cobertura de polyethylene de baja densidad (LDPE) o de película virtualmente impermeable (VIF) fueron evaluadas contra Cyperus esculentus, Amaranthus palmeri y Digitaria sanguinalis. Adicionalmente, un tratamiento estándar de methyl bromide-chloropicrin (67:33) a 390 kg ha−1 bajo cobertura de LDPE fue incluido con fines de comparación. La cobertura VIF no brindó ninguna ventaja sobre la cobertura LDPE para mejorar el control de malezas o el rendimiento del chile comercializable. Daños inaceptables causados al chile (≥60%) ocurrieron a la dosis más alta de phenyl ITC 1,500 kg ha−1 a 2 semanas después del tratamiento en ambos años, sin importar el tipo de cobertura. En 2006, se observaron mayores daños en el chile (≥36%) que en 2007 (≤11%) a 750 kg ha−1 de phenyl ITC. El menor daño en 2007 podría ser atribuido a la aireación de las camas 48 h antes del trasplante. Independientemente del tipo de cobertura, se requirió phenyl ITC a 2071 (±197) y 1655 (±309) kg ha−1 para controlar C. esculentus, A. palmeri y D. sanguinalis a niveles equivalentes a methyl bromide en 2006 y 2007, respectivamente. Los rendimientos de chile comercializable en todas las dosis de phenyl ITC fueron menores a los de methyl bromide en 2006. En contraste, el rendimiento comercializable del tratamiento phenyl ITC a 750 kg ha−1 fue equivalente a methyl bromide en 2007. Se concluyó que phenyl ITC debería ser aplicado a dosis al menos 4.2 veces mayores que methyl bromide para un control efectivo de malezas, y que la aireación de la cama es necesaria para minimizar el daño al cultivo y las pérdidas en rendimiento. Se necesita más investigación para evaluar la combinación de phenyl ITC con otras estrategias de control de malezas para obtener un control de malezas efectivo con un nivel aceptable de seguridad para el cultivo.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K., Libbey, C., and Boydston, R. 1997. Weed suppression with Brassica green manure crops in green pea. Weed Sci. 45 :439445.Google Scholar
Austerweil, M., Steiner, B., and Gamliel, A. 2006. Permeation of soil fumigants through agricultural plastic films. Phytoparasitica 34 :491501.CrossRefGoogle Scholar
Bangarwa, S. K., Norsworthy, J. K., and Gbur, E. E. 2009. Cover crop and herbicide combinations for weed control in polyethylene-mulched bell pepper. HortTechnology 19 :405410.Google Scholar
Bangarwa, S. K., Norsworthy, J. K., and Gbur, E. E. 2011. Allyl isothiocyanate: A methyl bromide replacement in polyethylene-mulched bell pepper. Weed Technol. 25 :9096.Google Scholar
Bangarwa, S. K., Norsworthy, J. K., Gbur, E. E., and Mattice, J. D. 2010. Phenyl isothiocyanate performance on purple nutsedge under virtually impermeable film mulch. HortTechnology 20 :402408.Google Scholar
Brown, P. D. and Morra, M. J. 1995. Glucosinolate-containing plant tissues as bioherbicides. J. Agric. Food Chem. 43 :30703074.CrossRefGoogle Scholar
Cal, D., Martinez-Treceno, A., Lopez-Aranda, J. M., and Melgarejo, P. 2004. Chemical alternatives to methyl bromide in Spanish strawberry nurseries. Plant Dis. 88 :210214.Google Scholar
Fenwick, G. R., Heaney, R. K., and Mullin, W. J. 1983. Glucosinolates and their breakdown products in food and food plants. Crit. Rev. Food Sci. Nutr. 18 :123201.Google Scholar
Frank, J. R., Schwartz, P. H. Jr., and Potts, W. E. 1992. Modeling the effect of weed interference periods and insects on bell peppers (Capsicum annuum). Weed Sci. 40 :308312.Google Scholar
Gilreath, J. P., Chase, C. A., and Chellemi, D. O. 1999. Nutsedge control with reduced rates of methyl bromide and virtually impermeable film mulch. http://mbao.org/altmet00/39gilreath.pdf. Accessed: March 2, 2012.Google Scholar
Haar, M. J., Fennimore, S. A., Ajwa, H. A., and Winterbottom, C. Q. 2003. Chloropicrin effect on weed seed viability. Crop Prot. 22 :109115.Google Scholar
Hadiri, N. El., Ammati, M., Chgoura, M., and Mounir, K. 2003. Behavior of methyl isothiocyanate in soils under field conditions in Morocco. Chemosphere 52 :927932.Google Scholar
Holmes, G. J. and Kemble, J. M., eds. 2010. Vegetable crop handbook for the southeastern United States. 11th ed. Lincolnshire, IL : Vance.Google Scholar
Krishnan, G., Holshouser, D. L., and Nissen, S. J. 1998. Weed control in soybean (Glycine max) with green manure crops. Weed Technol. 12 :97102.Google Scholar
Morales-Payan, J. P., Santos, B. M., Stall, W. M., and Bewick, T. A. 1998. Interference of purple nutsedge (Cyperus rotundus) population densities on bell pepper (Capsicum annum) yield as influenced by nitrogen. Weed Technol. 12 :230234.Google Scholar
Motis, T. N., Locascio, S. J., and Gilreath, J. P. 2004. Critical yellow nutsedge-free period for polyethylene-mulched bell pepper. HortScience 39 :10451049.Google Scholar
Motis, T. N., Locascio, S. J., Gilreath, J. P., and Stall, W. M. 2003. Season-long interference of yellow nutsedge (Cyperus esculentus) with polyethylene-mulched bell pepper (Capsicum annuum). Weed Technol. 17 :543549.Google Scholar
Noling, J. W. 2005. Reducing methyl bromide field application rates with plastic mulch technology. http://edis.ifas.ufl.edu/pdffiles/IN/IN40300.pdf. Accessed: January 11, 2010.Google Scholar
Noling, J. W., Botts, D. A., and McRae, A. W. 2011. Alternatives to methyl bromide soil fumigation for Florida vegetable production. http://edis.ifas.ufl.edu/pdffiles/CV/CV29000.pdf. Accessed: March 8, 2012.Google Scholar
Norsworthy, J. K. 2003. Allelopathic potential of wild radish (Raphanus raphanistrum). Weed Technol. 17 :307313.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005a. Herbicidal activity of eight isothiocyanates on Texas panicum (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Sci. 53 :515520.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005b. Use of isothiocyanates for suppression of Palmer amaranth (Amaranthus palmeri), pitted morningglory (Ipomoea lacunosa), and yellow nutsedge (Cyperus esculentus). Weed Sci. 53 :884890.Google Scholar
Norsworthy, J. K., Oliveira, M. J., Jha, P., Malik, M., Buckelew, J. K., Jennings, K. M., and Monks, D. W. 2008. Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol. 22 :296302.Google Scholar
Olson, S. M., Dittmar, P. J., Vallad, G. E., Webb, S. E., McAvoy, E. J., Smith, S. A., Ozores-Hampton, M., M. and Santos, B. M. 2012. Pepper production in Florida. Pages 223242 in Olson, S. M. and Santos, B. M., eds. Vegetable Production Handbook for Florida 2012–2013. Gainesville, FL : University of Florida.Google Scholar
Peterson, J., Belz, R., Walker, F., and Hurle, K. 2001. Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron. J. 93 :3743.Google Scholar
Schabenberger, O. and Pierce, F. J. 2002. Contemporary statistical models for the plant and soil sciences. Boca Raton, FL : CRC Press. Pp. 213222.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9 :218227.Google Scholar
Stuart, A. and Ord, J. K. 1994. Kendall's advanced theory of statistics. London, UK : Edward Arnold. Pp. 350354.Google Scholar
Swiader, J. M., McCollum, J. P., and Ware, G. 1992. Producing Vegetable Crops. 4th ed. Danville, IL : Interstate.Google Scholar
[USDA] U.S. Department of Agriculture. 2005. United States standards for grades of sweet peppers. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName =STELPRDC5050318. Accessed: March 2, 2012.Google Scholar
[USDA] U.S. Department of Agriculture, National Agricultural Statistics Service. 2012. Vegetable 2011 summary. http://usda01.library.cornell.edu/usda/current/VegeSumm/VegeSumm-01-26-2012.pdf. Accessed: March 2, 2012.Google Scholar
[USEPA] U.S. Environmental Protection Agency. 2008. Ozone Layer Depletion–Regulatory Programs: The Phaseout of Methyl Bromide Montreal Protocol. Available at: http://www.epa.gov/ozone/mbr/index.html. Accessed: September 15, 2008.Google Scholar
Webster, T. M. 2006. Weed survey—southern states: vegetable, fruit and nut crops subsection. South. Weed Sci. Soc. 59 :260277.Google Scholar
Yates, S. R., Gan, J., Papiernik, S. K., Dungan, R., and Wang, D. 2002. Reducing the fumigant emission after soil application. Phytopathology 92 :13441348.Google Scholar