Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T00:10:23.809Z Has data issue: false hasContentIssue false

Giant Ragweed (Ambrosia trifida) Seed Production and Retention in Soybean and Field Margins

Published online by Cambridge University Press:  20 January 2017

Jared J. Goplen*
Affiliation:
Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN 55108
Craig C. Sheaffer
Affiliation:
Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN 55108
Roger L. Becker
Affiliation:
Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN 55108
Jeffrey A. Coulter
Affiliation:
Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN 55108
Fritz R. Breitenbach
Affiliation:
University of Minnesota, 863 30th Avenue SE, Rochester, MN 55904
Lisa M. Behnken
Affiliation:
University of Minnesota, 863 30th Avenue SE, Rochester, MN 55904
Gregg A. Johnson
Affiliation:
Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN 55108
Jeffrey L. Gunsolus
Affiliation:
Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN 55108
*
Corresponding author's E-mail: gople007@umn.edu.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As herbicide-resistant weed populations become increasingly problematic in crop production, alternative strategies of weed control are necessary. Giant ragweed, one of the most competitive agricultural weeds in row crops, has evolved resistance to multiple herbicide biochemical sites of action within the plant, necessitating the development of new and integrated methods of weed control. This study assessed the quantity and duration of seed retention of giant ragweed grown in soybean fields and adjacent field margins. Seed retention of giant ragweed was monitored weekly during the 2012 to 2014 harvest seasons using seed collection traps. Giant ragweed plants produced an average of 1,818 seeds per plant, with 66% being potentially viable. Giant ragweed on average began shattering hard (potentially viable) and soft (nonviable) seeds September 12 and continued through October at an average rate of 0.75 and 0.44% of total seeds per day during September and October, respectively. Giant ragweed seeds remained on the plants well into the Minnesota soybean harvest season, with an average of 80% of the total seeds being retained on October 11, when Minnesota soybean harvest was approximately 75% completed in the years of the study. These results suggest that there is a sufficient amount of time to remove escaped giant ragweed from production fields and field margins before the seeds shatter by managing weed seed dispersal before or at crop harvest. Controlling weed seed dispersal has potential to manage herbicide-resistant giant ragweed by limiting replenishment of the weed seed bank.

Conforme las poblaciones de malezas resistentes a herbicidas se hacen incrementalmente más problemáticas en la producción de cultivos, estrategias alternativas de control de malezas se hacen cada vez más necesarias. Ambrosia trifida, una de las malezas agrícolas más competitivas en cultivos en hileras, ha evolucionado resistencia a múltiples sitios bioquímicos de acción de herbicidas dentro de la planta, lo que ha hecho necesario el desarrollo de métodos nuevos e integrados de control de malezas. Este estudio evaluó la cantidad y duración de la retención de semilla de A. trifida creciendo en campos de soja y márgenes de campos adyacentes. La retención de semilla de A. trifida fue monitoreada semanalmente durante las temporadas de cosecha desde 2012 a 2014 usando trampas de colección de semilla. Las plantas de A. trifida produjeron un promedio de 1,818 semillas por planta, con una viabilidad potencial de 66%. En promedio, A. trifida inició la dispersión de semilla dura (potencialmente viable) y suave (no-viable) el 12 de Septiembre y continuó durante Octubre, con una tasa promedio de 0.75 y 0.44% del total de semillas por día, durante Septiembre y Octubre, respectivamente. Las semillas de A. trifida permanecieron en las plantas hasta la temporada de cosecha de soja en Minnesota, con un promedio de 80% del total de las semillas estando retenidas al 11 de Octubre, cuando la cosecha de soja en Minnesota había sido completada al 75%, en los años de este estudio. Estos resultados sugieren que existe una cantidad de tiempo suficiente para remover A. trifida que haya escapado al control en campos de producción y en márgenes de campos antes de que la semilla sea liberada de la planta, mediante el manejo de la dispersión de semilla de malezas antes o durante la cosecha. El controlar la dispersión de semillas de malezas tiene el potencial de manejar A. trifida resistente a herbicidas al limitar el suministro de nuevas semillas al banco de semillas de malezas.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

Footnotes

Associate Editor for this paper: Lawrence Steckel, University of Tennessee.

References

Literature Cited

Abul-Fati, HA, Bazzaz, FA, Hunt, R (1979) The biology of Ambrosia trifida L. III. Growth and biomass allocation. New Phytol 83:829838 Google Scholar
Amatangelo, J (1974) Infestation of seeds of Ambrosia trifida, giant ragweed, by larval insects. Bios 45:1518 Google Scholar
Ball, DA, Miller, SD (1989) A comparison of techniques for estimation of arable soil seedbanks and their relationship to weed flora. Weed Res 29:365373 Google Scholar
Barroso, J, Navarrete, L, Sánchez del Arco, MJ, Fernandez-Quintanilla, C, Lutman, PJW, Perry, NH, Hull, RI (2006) Dispersal of Avena fatua and Avena sterilis patches by natural dissemination, soil tillage and combine harvesters. Weed Res 46:118128 Google Scholar
Bassett, IJ, Crompton, CW (1982) The biology of Canadian weeds. 55. Ambrosia trifida L. Can J Plant Sci 62:10021010 Google Scholar
Baysinger, JA, Sims, BD (1992) Giant ragweed (Ambrosia trifida) control in soybean (Glycine max). Weed Technol 6:1318 Google Scholar
Blanco-Moreno, JM, Chamorro, L, Masalles, RM, Recasens, J, Sans, FX (2004) Spatial distribution of Lolium rigidum seedlings following seed dispersal by combine harvesters. Weed Res 44:375387 Google Scholar
Brabham, CB, Gerber, CK, Johnson, WG (2011) Fate of glyphosate-resistant giant ragweed (Ambrosia trifida) in the presence and absence of glyphosate. Weed Sci 59:506511 Google Scholar
Cardina, J, Sparrow, DH (1996) A comparison of methods to predict weed seedling populations from the soil seedbank. Weed Sci 44:4651 Google Scholar
Fenner, M (1995) Ecology of seed banks. Pages 507528 in Kigel, J and Galili, G, eds. Seed Development and Germination. New York: Marcel Dekker Google Scholar
Forcella, F (1992) Prediction of weed seedling densities from buried seed reserves. Weed Res 32:2938 Google Scholar
Harrison, SK, Regnier, EE, Schmoll, JT, Webb, JE (2001) Competition and fecundity of giant ragweed in corn. Weed Sci 49:224229 Google Scholar
Heap, I (2015) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed March 16, 2015Google Scholar
Jurik, TW (1991) Population distributions of plant size and light environment of giant ragweed (Ambrosia trifida L.) at three densities. Oecologia 87:539550 Google Scholar
Mann, LK (1942) Effects of photoperiod on sex expression in Ambrosia trifida . Bot Gaz 103:780787 Google Scholar
Norsworthy, JK, Griffith, G, Griffin, T, Bagavathiannan, M, Gbur, EE (2014) In-field movement of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) and its impact on cotton lint yield: evidence supporting a zero-threshold strategy. Weed Sci 62:237249 Google Scholar
Page, MJ, Newlands, L, Eales, J (2002) Effectiveness of three seed-trap designs. Aust J Bot 50:587594 Google Scholar
Rew, LJ, Froud-Williams, RJ, Boatman, ND (1996) Dispersal of Bromus sterilis and Anthriscus sylvestris seed within arable field margins. Agric Ecosyst Environ 59:107114 Google Scholar
Shaner, DL, Beckie, HJ (2014) The future of weed control and technology. Pest Manag Sci 70:13291339 Google Scholar
Shirtliffe, SJ, Entz, MH (2005) Chaff collection reduces seed dispersal of wild oat (Avena fatua) by a combine harvester. Weed Sci 53:465470 Google Scholar
Shirtliffe, SJ, Entz, MH, Van Acker, RC (2000) Avena fatua development and seed shatter as related to thermal time. Weed Sci 48:555560 Google Scholar
Stoller, EW, Harrison, SK, Wax, LM, Regnier, EE, Nafziger, ED (1987) Weed interference in soybeans (Glycine max). Rev Weed Sci 3:155181 Google Scholar
Taghizadeh, MS, Nicolas, ME, Cousens, RD (2012) Effects of relative emergence time and water deficit on the timing of fruit dispersal in Raphanus raphanistrum L. Crop Pasture Sci 63:10181025 Google Scholar
[USDA-NASS] U.S. Department of Agriculture National Agriculture Statistics Service (2010) Field Crops Usual Planting and Harvesting Dates (October 2010). Washington, DC: U.S. Department of Agriculture. p 41 Google Scholar
[USDA-NASS] U.S. Department of Agriculture National Agriculture Statistics Service (2014) Minnesota Crop Progress. http://www.nass.usda.gov/Statistics_by_State/Minnesota/Publications/Crop_Progress_&_Condition/. Accessed December 14, 2014Google Scholar
Vitolo, DB, Stiles, EW (1987) The effect of density of Ambrosia trifida L. on seed predation by Euaresta festiva (Loew) (Dipera: Tephritidae). J N Y Entomol Soc 95:491494 Google Scholar
Walsh, MJ, Harrington, RB, Powles, SB (2012) Harrington seed destructor: a new nonchemical weed control tool for global grain crops. Crop Sci 52:13431347 Google Scholar
Walsh, MJ, Newman, P (2007) Burning narrow windrows for weed seed destruction. Field Crop Res 104:2430 Google Scholar
Walsh, MJ, Newman, P, Powles, SB (2013) Targeting weed seeds in-crop: a new weed control paradigm for global agriculture. Weed Technol 27:431436 Google Scholar
Walsh, MJ, Powles, SB (2007) Management strategies for herbicide-resistant weed populations in Australian dryland crop production systems. Weed Technol 21:332338 Google Scholar
Walsh, MJ, Powles, SB (2014) High seed retention at maturity of annual weeds infesting crop fields highlights the potential for harvest weed seed control. Weed Technol 28:486493 Google Scholar
Webster, TM, Loux, MM, Regnier, EE, Harrison, SK (1994) Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technol 8:559564 Google Scholar