Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T14:00:32.809Z Has data issue: false hasContentIssue false

Effects of Protoporphyrinogen Oxidase Inhibitors on Soybean (Glycine max L.) Response, Sclerotinia sclerotiorum Disease Development, and Phytoalexin Production by Soybean

Published online by Cambridge University Press:  20 January 2017

Kelly A. Nelson*
Affiliation:
Department of Agronomy, University of Missouri, Columbia, MO 65211
Karen A. Renner
Affiliation:
Departments of Crop and Soil Sciences, and Plant Pathology, Michigan State University, East Lansing, MI 48824-1325
Ray Hammerschmidt
Affiliation:
Departments of Crop and Soil Sciences, and Plant Pathology, Michigan State University, East Lansing, MI 48824-1325
*
Corresponding author's E-mail: nelsonke@missouri.edu.

Abstract

Sclerotinia stem rot is an important soybean disease. An increase in phytoalexin production with herbicide treatments may reduce the incidence of this disease in soybean. Research was conducted to determine soybean response, Sclerotinia sclerotiorum lesion development, and phytoalexin production in glyphosate-resistant and -susceptible soybean cultivars treated with protoporphyrinogen oxidase–inhibiting herbicides. Necrosis of soybean leaves 7 d after postemergence application of oxyfluorfen at 17.5 g ai/ha, carfentrazone at 1.8 g ai/ha, sulfentrazone at 9.0 g ai/ha, fomesafen at 280 g ai/ha, acifluorfen at 425 g ai/ha, flumiclorac at 30 g ai/ha, CGA-248757 at 4 g ai/ha, and oxadiazon at 280 g ai/ha was equal to or less than lactofen at 70 g ai/ha. In a detached leaf bioassay, S. sclerotiorum lesion diameter was reduced by oxyfluorfen, carfentrazone, sulfentrazone, lactofen, fomesafen, flumiclorac, and oxadiazon compared with the untreated control. Furthermore, lesion diameter on untreated leaves of soybean treated with oxyfluorfen, carfentrazone, sulfentrazone, lactofen, fomesafen, acifluorfen, flumiclorac, CGA-248757, and oxadiazon was reduced compared with the untreated control. Lactofen and sulfentrazone increased leaf phytoalexin production similarly, but neither herbicide affected stem phytoalexin production compared with the untreated control. Glyphosate-resistant and near-isogenic–susceptible cultivars responded similarly when inoculated with S. sclerotiorum in the detached leaf bioassay. Glyphosate-resistant S20-B9 and P93B01 produced more phytoalexins than glyphosate-susceptible S 19-90 and P9281. Herbicide treatments may increase phytoalexin production in leaves of treated plants, but levels in the stem do not explain protection from Sclerotinia stem rot.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Altman, J. and Campbell, C. L. 1977. Effect of herbicides on plant diseases. Annu. Rev. Phytopathol. 15: 362385.CrossRefGoogle Scholar
Baker, C. J. and Orlandi, E. W. 1995. Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol. 33: 299321.CrossRefGoogle ScholarPubMed
Casale, W. L. and Hart, L. P. 1986. Influence of four herbicides on carpogenic germination and apothecium development of Sclerotinia sclerotiorum . Phytopathology 76: 980984.CrossRefGoogle Scholar
Chun, D., Kao, L. B., Lockwood, J. L., and Isleib, T. G. 1987. Laboratory and field assessment of resistance in soybean to stem rot caused by Sclerotinia sclerotiorum . Plant Dis. 71: 811815.CrossRefGoogle Scholar
Cline, M. N. and Jacobsen, B. J. 1983. Methods for evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum . Plant Dis. 67: 784786.CrossRefGoogle Scholar
Dann, E. K., Diers, B. W., and Hammerschmidt, R. 1999. Suppression of Sclerotinia stem rot of soybean by lactofen herbicide treatment. Phytopathology 89: 598602.CrossRefGoogle ScholarPubMed
Fehr, W. R. and Caviness, C. E. 1977. Stages of Soybean Development. Ames, IA: Special Rep. 80. Cooperative Extension Service. Iowa State Univ. 20 p.Google Scholar
Grau, C. R., Radke, V. L., and Gillespie, F. L. 1982. Resistance of soybean cultivars to Sclerotinia sclerotiorum . Plant Dis. 66: 506508.CrossRefGoogle Scholar
Hammerschmidt, R. 1999. Phytoalexins: what have we learned after 60 years? Annu. Rev. Phytopathol. 37: 285306.CrossRefGoogle Scholar
Ingham, J. L., Keen, N. T., Mulheirn, L. J., and Lyne, R. L. 1981. Induciblyformed isoflavonoids from leaves of soybean. Phytochemistry 20: 795798.CrossRefGoogle Scholar
Keen, N. T., Holliday, M. J., and Yoshikawa, M. 1982. Effects of glyphosate on glyceollin production and the expression of resistance to Phytophthora megasperma f. sp. glycinea in soybean. Phytopathology 72: 14671470.CrossRefGoogle Scholar
Keen, N. T., Sims, J. J., Erwin, D. C., Rice, E., and Partridge, J. E. 1971. 6a-Hydroxyphaseollin: an antifungal chemical induced in soybean hypocotyls by Phytophthora megasperma var. sojae . Phytopathology 61: 10841089.CrossRefGoogle Scholar
Kim, H. S., Sneller, C. H., and Diers, B. W. 1999. Evaluation of soybean cultivars for resistance to Sclerotinia stem rot in field environments. Crop Sci. 39: 6468.CrossRefGoogle Scholar
Kömives, T. and Casida, J. E. 1983. Acifluorfen increases the leaf content of phytoalexins and stress metabolites in several crops. J. Agric. Food Chem. 31: 751755.CrossRefGoogle Scholar
Lee, C. and Penner, D. 1999. The effect of glyphosate on white mold (Sclerotinia sclerotiorum) in glyphosate-resistant and -sensitive soybeans (Glycine max). Abstr. Weed Sci. Soc. Am. 39:83.Google Scholar
Levene, B. C., Owen, M. D. K., and Tylka, G. L. 1998. Response of soybean cyst nematodes and soybeans (Glycine max) to herbicides. Weed Sci. 46: 264270.CrossRefGoogle Scholar
Lévesque, C. A. and Rahe, J. E. 1992. Herbicide interactions with fungal root pathogens, with special reference to glyphosate. Annu. Rev. Phytopathol. 30: 579602.CrossRefGoogle ScholarPubMed
Mehdy, M. C. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol. 105: 467472.CrossRefGoogle ScholarPubMed
Nelson, K. A. and Renner, K. A. 1999. Postemergence herbicides affect soybean development and incidence of white mold. Proc. N. Cent. Weed Sci. Soc. 54:28.Google Scholar
Radkey, V. L. and Grau, C. R. 1986. Effects of herbicides on carpogenic germination of Sclerotinia sclerotiorum . Plant Dis. 70: 1923.CrossRefGoogle Scholar
Reichard, S. L., Sulc, R. M., Rhodes, L. H., and Loux, M. M. 1997. Effects of herbicides on Sclerotinia crown and stem rot of alfalfa. Plant Dis. 81: 787790.CrossRefGoogle ScholarPubMed
Sanogo, S., Yang, X. B., and Scherm, H. 2000. Effects of herbicides on Fusarium solani f. sp. glycines and development of sudden death syndrome in glyphosate-tolerant soybean. Phytopathology 90: 5766.CrossRefGoogle ScholarPubMed
Sutherland, M. W. 1991. The generation of oxygen radicals during host plant responses to infection. Physiol. Mol. Plant Pathol. 39: 7993.CrossRefGoogle Scholar
Sutton, D. C. and Deverall, B. J. 1984. Phytoalexin accumulation during infection of bean and soybean by ascospores and mycelium of Sclerotinia sclerotiorum . Plant Pathol. 33: 377383.CrossRefGoogle Scholar
Yang, X. B., Lundee, P., and Uphoff, M. D. 1999. Soybean varietal response and yield loss caused by Scleriotinia sclerotiorum . Plant Dis. 83: 456461.CrossRefGoogle ScholarPubMed