Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:03:48.475Z Has data issue: false hasContentIssue false

Effects of Nozzle Selection and Ground Speed on Efficacy of Liberty and Engenia Applications and Their Implication on Commercial Field Applications

Published online by Cambridge University Press:  20 January 2017

Christopher J. Meyer*
Affiliation:
Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Greg R. Kruger
Affiliation:
University of Nebraska–Lincoln, North Platte, NE 69101
Tom Barber
Affiliation:
Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
*
Corresponding author's E-mail: cjmeyer@uark.edu.

Abstract

Sprayer applicator–controlled variables, such as nozzle selection and ground speed, will become increasingly important for making labeled POST applications of dicamba in next-generation cropping systems. Typically, nozzle orifice sizes and ground speeds differ greatly between small-plot research applications, from which efficacy recommendations are made, and commercial field applications. However, little research has been conducted to compare applications made with backpack sprayers and tractor sprayers. Thus, a field experiment was conducted in 2013 and 2014 at the Northeast Research and Extension Center in Keiser, AR. Tank mixtures of Engenia™ (N, N-Bis-(aminopropyl) methylamine form of dicamba), Liberty (glufosinate-ammonium), and Liberty + Engenia were applied with TeeJet XR, TT, AIXR, AI, and TTI nozzles at 5 km h−1 and 20 km h−1. Two nozzle sizes (110015 and 11006 rated at 0.58 L min−1 and 2.27 L min−1 at 276 kPa, respectively) were used to keep spray volume constant at 141 L ha−1, whereas ground speed was varied. Weed control ratings were typically lower at 5 km h−1 than at 20 km h−1. For example, Palmer amaranth control 4 WAT in 2013 with glufosinate and the TTI nozzle was 89% at 5 km h−1 and 96% at 20 km h−1. More differences between speeds were observed for the coarser nozzles, such as the TTI and AI, as opposed to finer nozzles, such as the XR and TT. Results from this research suggest increasing orifice size increases droplet size and that other factors related to applications at faster speeds (e.g., higher droplet velocity, disruption of the crop canopy) may influence the efficacy of herbicide applications. However, increasing ground speed is not a recommended means for increasing efficacy of herbicide applications.

Las variables controladas por el aplicador, tales como la selección de la boquilla y la velocidad de aplicación, serán cada vez más importantes para realizar aplicaciones POST de dicamba según la etiqueta, en los sistemas de cultivos de siguiente generación. Típicamente, el tamaño del orificio de la boquilla y las velocidades de aplicación difieren ampliamente entre aplicaciones en pequeñas parcelas de investigación, a partir de las cuales se hacen recomendaciones de eficacia, y las aplicaciones en campos comerciales. Sin embargo, se ha realizado poca investigación para comparar aplicaciones hechas con bombas de espalda y aspersores de tractor. De esta forma, se realizó un experimento de campo en 2013 y 2014 en el Centro de Investigación y Extensión del Noreste, en Keiser, Arkansas. Se aplicaron mezclas en tanque de Engenia™ (la forma N, N-Bis-(aminopropyl) methylamine de dicamba), Liberty (glufosinate-ammonium) y Liberty + Engenia con boquillas TeeJet XR, TT, AIXR, AI, y TTI a 5 km h−1 y 20 km h−1. Dos tamaños de boquilla (110015 y 11006 graduadas a 0.58 L min−1 y 2.27 L min−1 a 276 kPa, respectivamente) fueron usadas para mantener constante el volumen de aspersión a 141 L ha−1, cuando se varió la velocidad. Los valores de las evaluaciones de control de malezas fueron típicamente menores a 5 km ha−1 que ha 20 km h−1. Por ejemplo, el control de Amaranthus palmeri, 4 semanas después del tratamiento (WAT) en 2013, con glufosinate y la boquilla TTI fue 89% a 5 km h−1 y 96% a 20 km h−1. Más diferencias entre velocidades fueron observadas con boquillas de gota de mayor tamaño, tales como TTI y AI, en contraste con las boquillas de gotas más finas, tales como XR y TT. Los resultados de esta investigación sugieren que el incrementar el tamaño del orificio de la boquilla incrementa el tamaño de gota y que los otros factores relacionados a aplicaciones a mayores velocidades (e.g., mayor velocidad de la gota, y perturbación del dosel del cultivo) podría influenciar la eficacia de aplicaciones de herbicidas. Sin embargo, el aumentar la velocidad de aplicación no es un medio recomendable para aumentar la eficacia de las aplicaciones de herbicidas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Prashant Jha, Montana State University.

References

Literature Cited

Bagavathiannan, MV, Norsworthy, JK (2013) Occurrence of arable weeds in roadside habitats: implications for herbicide resistance management. Proc Weed Sci Soc 53:163 Google Scholar
Creech, CF, Henry, RS, Werle, R, Sandell, LD, Hewitt, AJ, Kruger, GR (2014) Performance of postemergence herbicides applied at different carrier volume rates. Weed Technol 29:611624 Google Scholar
Etheridge, RE, Hart, WE, Hayes, RM, Mueller, TC (2001) Effect of Venturi-type nozzles and application volume on postemergence herbicide efficacy. Weed Technol 15:7580 Google Scholar
Heap, I (2015) International Survey of Herbicide Resistant Weeds. Available at http://www.weedscience.com/summary/home.aspx. Accessed August 3, 2015Google Scholar
Knoche, M (1994) Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Prot 13:163178 Google Scholar
McKinlay, KS, Ashford, R, Ford, RJ (1974) Effects of drop size, spray volume, and dosage on paraquat toxicity. Weed Sci 22:3134 Google Scholar
Mueller, TC, Womac, AR (1997) Effect of formulation and nozzle type on droplet size with isopropylamine and trimesium salts of glyphosate. Weed Technol 11:639643 Google Scholar
Norsworthy, JK, Bond, J, Scott, RC (2013) Weed management practices and needs in Arkansas and Mississippi rice. Weed Technol 27:623630 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60(Special Issue):3162 Google Scholar
Nuyttens, D, Baetens, K, De Schampheleire, M, Sonck, B (2007) Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst Eng 97:333345 Google Scholar
Ramsdale, BK, Messersmith, CG (2001) Nozzle, spray volume, and adjuvant effects on carfentrazone and imazamox efficacy. Weed Technol 15:485491 Google Scholar
Webster, TM (2012) Southern Weed Science Society Weed Survey. Pages 267288 in Proceedings of the Southern Weed Science Society Annual Meeting. Charleston, SC: Southern Weed Science Society Google Scholar
Webster, TM (2013) Southern Weed Science Society Weed Survey. Pages 275287 in Proceedings of the Southern Weed Science Society Annual Meeting. Houston, TX: Southern Weed Science Society Google Scholar
Wolf, TM, Liu, SH, Caldwell, BC, Hsiao, AI (1997) Calibration of greenhouse spray chambers: The importance of dynamic nozzle patternation. Weed Technol 11:428435 Google Scholar