Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:39:57.062Z Has data issue: false hasContentIssue false

Effects of Landscape Position, Rainfall, and Tillage on Residual Herbicides

Published online by Cambridge University Press:  20 January 2017

James R. Moyer*
Affiliation:
Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Avenue South, Lethbridge, Alberta, Canada T1J 4B1
Gerald Coen
Affiliation:
Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Avenue South, Lethbridge, Alberta, Canada T1J 4B1
Robert Dunn
Affiliation:
Alberta Agriculture and Rural Development, 5401 1st Avenue South, Lethbridge, Alberta, Canada T1J 4V6
Anne M. Smith
Affiliation:
Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Avenue South, Lethbridge, Alberta, Canada T1J 4B1
*
Corresponding author's E-mail: jim.moyer@agr.gc.ca.

Abstract

The effect of soil properties and weather on herbicide persistence and injury to following crops were studied at a site near Lethbridge, Alberta, Canada, with undulating topography that included no-tillage and conventional tillage systems on adjacent fields. Soil pH ranged from 5.2 (lower slope no-tillage) to 7.8 (upper slope conventional tillage) and soil organic matter content ranged from 2.3% (upper slope conventional tillage) to 4.4% (lower slope no-tillage). During the years when the experiments were conducted rainfall ranged from < 50% of normal to > 150% of normal. During dry years atrazine and metsulfuron severely injured wheat and lentil crops, seeded 1 yr after herbicide application, on upper slope locations. The most severe injury occurred on the upper slope conventional tillage location. In years with high rainfall, no crop injury occurred 1 yr after atrazine and metsulfuron application on either upper or lower slope locations in both tillage systems. Imazamox plus imazethapyr caused almost 100% injury in the lower slope position in the no-tillage system (pH 5.2) in the driest year. Following-crop injury due to the imidazolinone herbicides decreased with increasing rainfall and increasing soil pH. The most severe injury to following crops seemed to occur when herbicide dissipation was dependent on microbial activity and rainfall was below normal.

El efecto de las propiedades del suelo y el clima en la persistencia del herbicida y el daño en cultivos subsecuentes se estudió en un sitio cercano a Lethbridge, Alberta con topografía ondulante que incluyó sistemas de cero labranza y labranza convencional a campos adyacentes. El pH del suelo varió de 5.2 (en la parte inferior de la ladera sin labranza) a 7.8 (en la parte superior de la ladera con labranza convencional) y el contenido de materia orgánica del suelo varió del 2.3% (parte superior de la ladera con labranza convencional) a 4.4% (parte inferior sin labranza). Durante los años que los experimentos se llevaron al cabo, la precipitación varió entre < 50% de la normal hasta > 150% de la normal. Durante los años de sequía el atrazine y metsulfuron dañaron severamente el trigo y el cultivo de lenteja sembrada un año después de la aplicación del herbicida en los sitios localizados en la parte superior. El mayor daño ocurrió en los sitios ubicados en la parte de más arriba de la ladera con labranza convencional. En los años con mayor precipitación no se dañó el cultivo un año después de que se aplicó atrazine y metsulfuron ni en sitios inferiores ni superiores, en ambos sistemas de labranza. El Imazamox más imazethapyr causaron casi 100% de daño en la posición de más abajo en el sistema de cero labranza (pH 5.2) en el año más seco. El daño atribuible a los herbicidas con imidazolinone en el cultivo subsecuente disminuyó con el incremento de las lluvias y del pH del suelo. El mayor daño a los cultivos subsecuentes ocurrió cuando la disipación del herbicida, dependió de la actividad microbial y la precipitación fue más baja de lo normal.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amundson, R. G., Task, J., and Pendall, E. 1988. A rapid method of soil carbonate analysis using gas chromatography. Soil Sci. Soc. Am. J. 52:880883.Google Scholar
Anderson, D. W. 1987. Pedogenesis in the grassland and adjacent forests of the Great Plains. Adv. Soil Sci 7:5393.CrossRefGoogle Scholar
Anonymous 2006. Ally® main label. http://www2.dupont.com/crop_protection/en_ca/. Accessed: February 3, 2010.Google Scholar
Anonymous 2008. Crop Protection 2008. Edmonton, AB, Canada: Alberta Agriculture and Food, AGDEX 606-1. 537.Google Scholar
Anonymous 2009a. AATREX® Liquid 480. http://www.syngenta.ca/farm/labels/. Accessed: February 3, 2010.Google Scholar
Anonymous 2009b. Odyssey® WDG herbicide. http://www.agsolutions.ca/. Accessed: February 12, 2010.Google Scholar
Benoit, P., Barriuso, E., and Soulas, G. 1999. Degradation of 2,4-D, 2,4-dichlorophenol, and 4-chlorophenol in soil after sorption on humified and nonhumified organic matter. J. Environ. Qual 28:11271135.CrossRefGoogle Scholar
Blackshaw, R. E., Moyer, J. R., and Huang, H. 2005. Beneficial effects of cover crops on soil health and crop management. Pages 1535. in Pandalai, S. G. ed. Recent Research Developments in Soil Science. Kerala, India: Research Signpost.Google Scholar
Bresnahan, G., Dexter, A., Koskinen, W., and Lueschen, W. 2002. Influence of soil pH–sorption interactions on the carry-over of fresh and aged soil residues of imazamox. Weed Res 42:4551.CrossRefGoogle Scholar
Bresnahan, G. A., Koskinen, W. C., Dexter, A. G., and Lueschen, W. E. 2000. Influence of soil pH–sorption interactions on imazethapyr carry-over. J. Agric. Food Chem 48:19291934.CrossRefGoogle ScholarPubMed
Expert Committee on Weeds, Western Canada Section 1993. Electronic Data Input Users Manual. Production version 2.4. Regina, SK, Canada: Agriculture Canada, Regina Research Station. 39.Google Scholar
Flint, J. L. and Witt, W. W. 1997. Microbial degradation of imazaquin and imazethapyr. Weed Sci 445:586591.Google Scholar
Helling, C. S. 2005. The science of soil residual herbicides. Pages 322. in Van Acker, R. C. ed. Soil Residual Herbicides: Science and Management. Topics in Canadian Weed Science. Volume 3. Saint-Anne-de Bellevue, QC, Canada: Canadian Weed Science Society.Google Scholar
Hill, B. D. and Schaalje, G. B. 1985. A two-compartment model for the dissipation of deltramethrin on soil. J. Agric. Food Chem 33:10011006.Google Scholar
Janzen, H. H., Campbell, C. A., Brandt, S. A., Lafond, G. P., and Townley-Smith, L. 1992. Light-fraction organic matter in soils from long-term crop rotations. Soil Sci. Soc. Am. J. 56:17991806.Google Scholar
Knuesli, E., Berrer, D., Dupuis, G., and Esser, H. 1969. S-triazines. Pages 5178. in Kearney, P. C. and Kaufman, D. D. eds. Degradation of Herbicides. New York: Marcel Dekker.Google Scholar
Loux, M. M. and Reese, K. D. 1992. Effect of pH on adsorption and persistence of imazaquin. Weed Sci 490498.Google Scholar
Loux, M. M. and Reese, K. D. 1993. Effect of soil type on persistence and carryover of imidazolinone herbicides. Weed Technol 7:452458.CrossRefGoogle Scholar
MacMillan, R. A., Pettapiece, W. W., Nolan, S. C., and Goddard, T. W. 2000. A generic procedure for automatically segmenting landforms into landform elements using DEMS, heuristics rules and fuzzy logic. Fuzzy Sets Sys 113:81109.Google Scholar
Moyer, J. R. and Blackshaw, R. E. 1993. Effect of soil moisture on atrazine and cyanazine persistence and injury to subsequent cereal crops in southern Alberta. Weed Technol 7:988994.Google Scholar
Reddy, K. N., Locke, M. A., and Gaston, L. A. 1997. Tillage and cover crop effects on cyanazine adsorption and desorption kinetics. Soil Sci 162:501509.Google Scholar
Reddy, K. N., Zablotowicz, R. M., and Locke, M. A. 1995. Chlorimuron adsorption, desorption and degradation in soils from conventional tillage and no-tillage systems. J. Environ. Qual 24:760767.Google Scholar
Schoenau, J. J., Szmigielski, A. M., and Eliason, R. C. 2005. The effect of landscape position on residual herbicide activity in prairie soils. Pages 4552. in Van Acker, R. C. ed. Soil Residual Herbicides: Science and Management. Topics in Canadian Weed Science. Volume 3. Saint-Anne-de Bellevue, QC, Canada: Canadian Weed Science Society.Google Scholar
Shaner, D. L. and Hornford, R. 2005. Soil interactions of imidazolinone herbicides used in Canada. Pages 2330. in Van Acker, R. C. ed. Soil Residual Herbicides: Science and Management. Topics in Canadian Weed Science. Volume 3. Saint-Anne-de Bellevue, QC, Canada: Canadian Weed Science Society.Google Scholar
Skjemstad, J. O., Dala, R. C., and Baron, P. F. 1986. Spectroscopic investigations of cultivation effects on organic matter of Vertisols. Soil Sci. Soc. Am. J. 50:354359.Google Scholar
Smith, A. M., Coen, G. M., Moyer, J. R., and Dunn, R. 2006. Landscape segmentation modeling in agricultural fields: correlating soil pH to herbicide persistence. J. Soil Water Conserv 61:362369.Google Scholar
Spycher, G., Sollins, P., and Rose, S. 1983. Carbon and nitrogen in the light fraction of a forest soil: vertical distribution and seasonal patterns. Soil Sci 135:7987.Google Scholar
Strek, H. J. 2005. The science of DuPont's soil residual herbicides in Canada. Pages 4552. in Van Acker, R. C. ed. Soil Residual Herbicides: Science and Management. Topics in Canadian Weed Science. Volume 3. Saint-Anne-de Bellevue, QC, Canada: Canadian Weed Science Society.Google Scholar