Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T19:44:46.288Z Has data issue: false hasContentIssue false

Effect of Row Spacing, Seeding Rate, and Herbicide Program in Glufosinate-Resistant Soybean on Palmer Amaranth Management

Published online by Cambridge University Press:  20 January 2017

Holden D. Bell*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Robert C. Scott
Affiliation:
Department of Crop, Soil, and Environmental Sciences, P.O. Box 357, Lonoke, AR 72086
Michael Popp
Affiliation:
Department of Agricultural Economics and Agribusiness, AGRI217, Fayetteville, AR 72701
*
Corresponding author's E-mail: holdendbell@gmail.com.

Abstract

A field experiment was conducted in Fayetteville, AR, in 2012 and 2013 to determine the influence of soybean row spacing, seeding rate, and herbicide program in glufosinate-resistant soybean on Palmer amaranth control, survival, and seed production; soybean groundcover and grain yield; and economic returns. Soybean groundcover was > 80% by 85 d after soybean planting (DAP) for all row spacing and seeding rates in 2012 and in 2013 all soybean row spacings and soybean seeding rates had achieved > 90% groundcover by 50 DAP. Difference in groundcover between years was due to lack of precipitation in 2012. Palmer amaranth control at 21 DAP was 99 to 100% for both years when a PRE application of S-metolachlor plus metribuzin was made at planting. At 42 DAP, Palmer amaranth control following PRE-applied S-metolachlor plus metribuzin was ≥ 98 and ≥ 88% in 2012 and 2013, respectively. When relying on a POST-only herbicide program initiated at 21 DAP, Palmer amaranth control ranged from 52 to 84% across row spacings at 42 DAP. At soybean harvest, Palmer amaranth control was ≥ 95% in 2012 and ≥ 86% in 2013 regardless of row spacing or seeding rate when S-metolachlor plus metribuzin was applied at planting. Conversely, total-POST programs had no more than 50 and 85% Palmer amaranth control in 2012 and 2013, respectively. In both years, Palmer amaranth density and seed production at soybean harvest were generally lower in the PRE herbicide programs compared to POST-only programs. Use of a PRE herbicide at planting also improved soybean grain yield and economic returns over programs that relied on a POST-only program. Overall, the impacst of soybean row spacing and seeding rate on Palmer amaranth control, density, or seed production were less apparent than the influence of herbicide programs.

Se realizó un experimento en Fayetteville, Arkansas, en 2012 y 2013, para determinar la influencia de la distancia entre hileras de siembra de la soja y el programa de herbicidas en soja resistente a glufosinate sobre el control, la supervivencia, y la producción de semilla de Amaranthus palmeri, la cobertura del suelo y el rendimiento de grano de la soja, y la rentabilidad económica. La cobertura del suelo de la soja fue > 80% a 85 d después de la siembra (DAP) para todas las distancias entre hileras y densidades de siembra en 2012, y en 2013, todas las distancias entre hileras y densidades de siembra de la soja habían alcanzado > 90% de cobertura del suelo a 50 DAP. La diferencia en cobertura de suelo entre los años se debió a falta de lluvia en 2012. El control de A. palmeri a 21 DAP fue 99 a 100% para ambos años cuando se realizó una aplicación PRE de S-metolachlor más metribuzin al momento de la siembra. A 42 DAP, el control de A. palmeri después de aplicaciones PRE de S-metolachlor más metribuzin fue ≥ 98 y ≥ 88% en 2012 y 2013, respectivamente. Cuando se dependió de programas de herbicidas con solamente aplicaciones POST iniciadas 21 DAP, el control de A. palmeri varió de 52 a 84% en las diferentes distancias entre hileras a 42 DAP. Al momento de la cosecha de la soja, el control de A. palmeri fue ≥ 95% en 2012 y ≥ 86% en 2013 sin importar la distancia entre hileras o la densidad de siembra cuando se aplicó S-metolachlor más metribuzin al momento de la siembra. En cambio, los programas totalmente POST no tuvieron más de 50 y 85% de control de A. palmeri, en 2012 y 2013, respectivamente. En ambos años, la densidad y producción de semilla de A. palmeri al momento de la cosecha de la soja, fueron generalmente menores en los programas con herbicidas PRE, al compararse con los programas con sólo herbicidas POST. El uso de herbicidas PRE al momento de la siembra también mejoró los rendimientos de grano de la soja y la rentabilidad económica por encima de los programas con sólo herbicidas POST. En general, el impacto de la distancia entre hileras y la densidad de siembra de la soja sobre el control, densidad, o producción de semilla de A. palmeri fue menos aparente que la influencia del programa de herbicidas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2014a) Liberty 280 SL herbicide label. Research Triangle Park, NC: Bayer CropScience. http://www.cdms.net/LDat/IdUA5004.pdf. Accessed April 26, 2014Google Scholar
Anonymous (2014b) University of Arkansas Division of Agriculture Research and Extensions 2014 Crop Enterprise Budgets. http://www.uaex.edu/farm-ranch/economics-marketing/farm-planning/enterprise-budget.aspx Google Scholar
Anonymous (2014c) Arkansas Soybean Promotion Board. http://www.themiraclebean.com/markets. Accessed July 6, 2015Google Scholar
Anonymous (2014d) National Agricultural Statistics Service. http://www.nass.usda.gov/statistics_by_subject/index/php?sector=crops Google Scholar
Bagavathiannan, MV, Norsworthy, JK, Smith, KL, Burgos, N (2011) Seedbank size and emergence pattern of barnyardgrass (Echinochloa crus-galli) in Arkansas. Weed Sci 59:359365 Google Scholar
Barnett, KA, Culpepper, AS, York, AC, Steckel, LE (2013) Palmer amaranth (Amaranthus palmeri) control by glufosinate plus fluometuron applied postemergence to WideStrike® cotton. Weed Technol 27:291297 Google Scholar
Bensch, CN, Horak, MJ, Peterson, D (2003) Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (Amaranthus palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci 51:3743 Google Scholar
Beyers, JT, Smeda, RJ, Johnson, WG (2002) Weed management programs in glufosinate-resistant soybean (Glycine max). Weed Technol 16:267273 Google Scholar
Buehring, NW, Nice, GRW, Shaw, DR (2002) Sicklepod (Senna obtusifolia) control in soybean (Glycine max) response to soybean row spacing and population in three weed management systems. Weed Technol 16:131141 Google Scholar
Burke, IC, Schroeder, M, Thomas, WE, Wilcut, JW (2007) Palmer amaranth interference and seed production in peanut. Weed Technol 21:367371 Google Scholar
Coetzer, E, Al-Khatib, K, Peterson, DE (2002) Glufosinate efficacy on Amaranthus species in glufosinate-resistant soybean (Glycine max). Weed Technol 16:326331 Google Scholar
DeVore, JD, Norsworthy, JK, Brye, KR (2013) Influence of deep tillage, a rye cover crop, and various soybean production systems on Palmer amaranth emergence in soybean. Weed Technol 27:263270 Google Scholar
Gardner, AP, York, AC, Jordan, DL, Monks, DW (2006) Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton. J Cotton Sci 10:328338 Google Scholar
Gibson, AC (1998) Photosynthetic organs of desert plants. Bioscience 48:914 Google Scholar
Hamill, AS, Knezevic, SZ, Chandler, K, Sikkema, PH, Tardif, FJ, Shrestha, A, Swanton, CJ (2000) Weed control in glufosinate-resistant corn (Zea mays). Weed Technol 14:578585 Google Scholar
Harder, DB, Sprague, CL, Renner, KA (2007) Effect of soybean row width and population on weeds, crop yield, and economic return. Weed Technol 21:744752 Google Scholar
Harker, KN, O'Donovan, JT (2013) Recent weed control, weed management, and integrated weed management. Weed Technol 27:111 CrossRefGoogle Scholar
Heap, I (2014) The Internation Survey of Herbicide Resistant Weeds. http://www.weedscience.org/summary/home.aspx. Accessed April 26, 2014Google Scholar
Hock, SM, Knezevic, SZ, Martin, AR, Lindquist, JL (2006) Soybean row spacing and weed emergence time influence weed competitiveness and competitive indices. Weed Sci 54:3846 Google Scholar
Jha, P, Norsworthy, JK (2009) Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci 57:644651 Google Scholar
Jha, P, Norsworthy, JK, Bridges, W Jr., Riley, MB (2008) Influence of glyphosate timing and row width on Palmer amaranth (Amaranthus palmeri) and pusley (Richardia spp.) demographics in glyphosate-resistant soybean. Weed Sci 56:408415 CrossRefGoogle Scholar
Kay, RD, Edwards, WM, Duffy, PA (2008) Farm Management. 6th edn. New York: McGraw-Hill. Pp 175185 Google Scholar
Keeley, PE, Carter, CH, Thullen, RJ (1987) Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 35:199204 Google Scholar
Klingaman, TE, Oliver, LR (1994) Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci 42:523527 Google Scholar
Krausz, RF, Young, BG, Kapusta, G, Matthews, JL (2001) Influence of weed competition and herbicides on glyphosate-resistant soybean (Glycine max). Weed Technol 15:530534 Google Scholar
Monks, DW, Oliver, LR (1988) Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Sci 36:770774 Google Scholar
Morgan, GD, Baumann, PA, Chandler, JM (2001) Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol 15:408412 Google Scholar
Nice, GRW, Buehring, NW, Shaw, DR (2001) Sicklepod (Senna obtusifolia) response to shading, soybean (Glycine max) row spacing, and population in three management systems. Weed Technol 15:155162 CrossRefGoogle Scholar
Norsworthy, JK (2004) Soil-applied herbicide use in wide- and narrow-row glyphosate-resistant soybean (Glycine max). Crop Prot 23:12371244 Google Scholar
Norsworthy, JK, Griffith, GM, Scott, RC, Smith, KL, Oliver, LR (2008a) Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol 22:108113 Google Scholar
Norsworthy, JK, Jha, P, Bridges, W Jr. (2007) Sicklepod (Senna obtusifolia) survival and fecundity in wide- and narrow-row glyphosate-resistant soybean. Weed Sci 55:252259 Google Scholar
Norsworthy, JK, Oliver, LR (2002) Pitted morningglory interference in drill-seeded glyphosate-resistant soybean. Weed Sci 50:2633 Google Scholar
Norsworthy, JK, Oliveria, MJ, Jha, P, Malik, M, Buckelew, JK, Jennings, KM, Monks, DW (2008b) Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol 22:296302 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60 (Special Issue):3162 Google Scholar
Place, GT, Reberg-Horton, SC, Dunphy, JE, Smith, AN (2009) Seeding rate effects on weed control and yield for organic soybean production. Weed Technol 23:497502 Google Scholar
Powles, SB, Preston, C, Bryan, IB, Jutsum, AR (1997) Herbicide resistance: impact and management. Adv Agron 58:5793 Google Scholar
Purcell, LC (2000) Soybean canopy coverage and light interception measurements using digital imagery. Crop Sci 40:834837 Google Scholar
Riar, DS, Norsworthy, JK, Griffith, GM (2011) Herbicide programs for enhanced glyphosate-resistant and glufosinate-resistant cotton (Gossypium hirsutum). Weed Technol 25:526534 Google Scholar
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, DO IV, Eubank, TW, Scott, RC (2013) Assessment of weed management practices and problem weeds in the midsouth United States-soybean: a consultant's perspective. Weed Technol 27:612622 CrossRefGoogle Scholar
Rich, AM, Renner, KA (2007) Row spacing and seeding rate effects on eastern black nightshade (Solanum ptychanthum) and soybean. Weed Technol 21:124130 Google Scholar
Scott, B, Smith, K (2011) Prevention and control of glyphosate-resistant pigweed in soybean and cotton. University of Arkansas Cooperative Extension Service Printing Services FSA 2152-PD-3-11RV. Pages 4 pGoogle Scholar
Scott, RC, Barber, LT, Boyd, JW, Norsworthy, JK, Burgos, N (2014) Recommended Chemicals for Weed and Brush Control. Little Rock, AR: The University of Arkansas Division of Agriculture Cooperative Extension Service Miscellaneous Publication 44. P 38 Google Scholar
Sellers, BA, Smeda, RJ, Johnson, WG, Kendig, JA, Ellersieck, MR (2003) Comparative growth of six Amaranthus species in Missouri. Weed Sci 51:329333 Google Scholar
Sosnoskie, LM, Webster, TM, Culpepper, AS (2013) Glyphosate resistance does not affect Palmer amaranth (Amaranthus palmeri) seedbank longevity. Weed Sci 61:283288 Google Scholar
Stewart, CL, Nurse, RE, Hamill, AS, Sikkema, PH (2010) Environment and soil conditions influence pre- and postemergence herbicide efficacy in soybean. Weed Technol 24:234243 Google Scholar
Taylor-Lovell, S, Wax, LM, Bollero, G (2002) Preemergence flumioxazin and pendimethalin and postemergence herbicide systems for soybean (Glycine max). Weed Technol 16:502511 Google Scholar
Webster, TM, Nichols, RL (2012) Changes in the prevalence of weed species in the major agronomic crops of the Southern United States: 1994/1995 to 2008/2009. Weed Sci 60:145157 Google Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2010) Palmer amaranth (Amaranthus palmeri) control in soybean with glyphosate and conventional herbicide systems. Weed Technol 24:403410 Google Scholar
Wiesbrook, ML, Johnson, WG, Hart, SE, Bradley, PR, Wax, LM (2001) Comparison of weed management systems in narrow-row, glyphosate- and glufosinate-resistant soybean (Glycine max). Weed Technol 15:122128 Google Scholar
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301307 Google Scholar
Young, BG, Young, JM, Gonzini, LC, Hart, SE, Wax, LM, Kapusta, G (2001) Weed management in narrow- and wide-row glyphosate-resistant soybean (Glycine max). Weed Technol 15:112121 CrossRefGoogle Scholar