Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T23:23:29.207Z Has data issue: false hasContentIssue false

Effect of Pyroxasulfone Application Timing and Rate on Soybean

Published online by Cambridge University Press:  15 March 2017

Daniel O. Stephenson IV*
Affiliation:
Associate Professor, former Research Associate, and Research Associate, Louisiana State University Agricultural Center, Dean Lee Research and Extension Center, Alexandria, LA 71302
David C. Blouin
Affiliation:
Professor, Department of Experimental Statistics, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
James L. Griffin
Affiliation:
Professor Emeritus and former Graduate Research Assistant, School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
Randall L. Landry
Affiliation:
Associate Professor, former Research Associate, and Research Associate, Louisiana State University Agricultural Center, Dean Lee Research and Extension Center, Alexandria, LA 71302
Brandi C. Woolam
Affiliation:
Associate Professor, former Research Associate, and Research Associate, Louisiana State University Agricultural Center, Dean Lee Research and Extension Center, Alexandria, LA 71302
John M. Hardwick
Affiliation:
Professor Emeritus and former Graduate Research Assistant, School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
*
*Corresponding author’s E-mail: dstephenson@agcenter.lsu.edu

Abstract

Weed-free field experiments were conducted to evaluate soybean injury, growth, and yield following PRE or POST pyroxasulfone application. Soybean was injured 1 and 15% following pyroxasulfone PRE and POST application, respectively, 7 d after treatment (DAT). Injury following PRE and POST application was observed as delayed emergence and leaf necrosis and crinkling, respectively. Injury ranged from 0 to 6% following both application timings 14 and 28 DAT. Soybean was injured 5% or less following 60, 120, 180, 240, and 300 g ha−1 of pyroxasulfone. Soybean plant population, height, and yield were not affected by pyroxasulfone application timing. Only 300 g ha−1 of pyroxasulfone reduced soybean plant population to 90% of the nontreated 30 d after PRE. Pyroxasulfone rate did not influence soybean heights and yield. Data indicates that pyroxasulfone can safely be applied to soybean without a detrimental effect on plant growth or yield.

Se realizaron experimentos de campo en condiciones libres de malezas para evaluar el daño, el crecimiento y el rendimiento de la soja después de aplicaciones PRE o POST de pyroxasulfone. La soja fue dañada 1 y 15% después de aplicaciones PRE y POST de pyroxasulfone, respectivamente, 7 d después del tratamiento (DAT). El daño que siguió a las aplicaciones PRE y POST fue observado como un retraso en la emergencia y necrosis y arrugamiento foliar, respectivamente. El daño varió desde 0 a 6% después de ambos momentos de aplicación, 14 y 28 DAT. La soja fue dañada 5% o menos con 60, 120, 180, 240, y 300 g ha−1 de pyroxasulfone. La población, altura, y rendimiento de la soja no fueron afectados por el momento de aplicación de pyroxasulfone. Solamente 300 g ha−1 de pyroxasulfone redujo la población de la soja a 90% del testigo sin tratamiento 30 d después de PRE. La dosis de pyroxasulfone no influenció la altura de la soja ni el rendimiento. Los datos indican que pyroxasulfone puede ser aplicado en forma segura a la soja sin causar efectos negativos sobre el crecimiento de la planta ni el rendimiento.

Type
Weed Management-Major Crops
Copyright
© Weed Science Society of America, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: William Johnson, Purdue University.

References

Literature Cited

Anonymous (2016) Zidua® herbicide product label. Research Triangle Park, NC: BASF Corporation. http://www.cdms.net/ldat/ldAMK012.pdf. Accessed September 21, 2016Google Scholar
Geier, PW, Stahlman, PW, Frihauf, JC (2006) KIH-485 and S-metolachlor efficacy comparisons in conventional and no-tillage corn. Weed Technol 20:622626 Google Scholar
Grey, TL, Cutts, GS 3rd, Newsom, LJ, Newell, SH 2nd (2014) Comparison of pyroxasulfone to soil residual herbicide for glyphosate resistant Palmer amaranth control in glyphosate resistant soybean. Crop Manag 12:10.1094/CM-2013-0032-RSGoogle Scholar
Hulting, AG, Dauer, JT, Hinds-Cook, B, Curtis, D, Koepke-Hill, R, Mallory-Smith, C (2012) Management of Italian ryegrass (Lolium perenne spp. multiflorum) in western Oregon with preemergence applications of pyroxasulfone in winter wheat. Weed Technol 26:230235 Google Scholar
King, SR, Garcia, JO (2008) Annual broadleaf control with KIH-485 in glyphosate-resistant furrow-irrigated corn. Weed Technol 22:420424 Google Scholar
King, SR, Ritter, RL, Hagood, ES Jr, Menbere, H (2007) Control of acetolactate synthase-resistant shattercane (Sorghum bicolor) in field corn with KIH-485. Weed Technol 21:578582 Google Scholar
Knezevic, SZ, Datta, A, Scott, J, Porpiglia, PJ (2009) Dose-response curves of KIH-485 for preemergence weed control in corn. Weed Technol 23:3439 Google Scholar
Mahoney, KJ, Shropshire, C, Sikkema, PH (2014) Weed management in conventional- and no-tillage soybean using flumioxazin/pyroxasulfone. Weed Technol 28:298306 Google Scholar
McNaughton, KE, Shropshire, C, Robinson, DE, Sikkema, PH (2014) Soybean (Glycine max) tolerance to timing applications of pyroxasulfone, flumioxazin, and pyroxasulfone+flumioxazin. Weed Technol 28:494500 Google Scholar
Mueller, TC, Steckel, LE (2011) Efficacy and dissipation of pyroxasulfone and three chloroacetamides in Tennessee field soil. Weed Sci 59:574579 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60(SI 1): 3162 Google Scholar
Prostko, EP, Grey, TL, Webster, TM, Kimerait, RC (2011) Peanut tolerance to pyroxasulfone. Peanut Sci 38:111114 Google Scholar
Shaner, DL, ed (2014) Herbicide Handbook. 10th edn. Champaign, IL: Weed Science Society of America Google Scholar
Steele, GL, Porpiglia, PJ, Chandler, JM (2005) Efficacy of KIH-485 on Texas panicum (Panicum texanum) and selected broadleaf weeds in corn. Weed Technol 19:866869 Google Scholar
Tanetani, Y, Fujioka, T, Kaku, K, Shimizu, T (2011) Studies on the inhibition of plant very-long-chain fatty acid elongase by a novel herbicide, pyroxasulfone. J Pestic Sci 36:221228 Google Scholar
Tanetani, Y, Kaku, K, Kawai, K, Fujioka, T, Shimizu, T (2009) Action mechanism of a novel herbicide, pyroxasulfone. Pestic Biochem Physiol 95:4755 Google Scholar
Yamaji, Y, Honda, H, Kobayashi, M, Hanai, R, Inoue, J (2014) Weed control efficacy of a novel herbicide, pyroxasulfone. J Pestic Sci 39:165169 Google Scholar