Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T05:03:10.421Z Has data issue: false hasContentIssue false

Effect of Postflood Quinclorac Applications on Commercial Rice Cultivars

Published online by Cambridge University Press:  20 January 2017

Jason A. Bond*
Affiliation:
Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776
Timothy W. Walker
Affiliation:
Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776
*
Corresponding author's E-mail: jbond@drec.msstate.edu

Abstract

Rice cultivar, growth stage at application, or both may influence rice tolerance to quinclorac. Field studies were conducted to compare the response of five rice cultivars ‘Bowman’, ‘Cheniere’, ‘CL161’, ‘Cocodrie’, and ‘XL723’ to postflood quinclorac applications. Quinclorac at 0.56 kg ai ha−1 was applied 2 and 4 wk after flood (WAF). Pooled across quinclorac application timings, no differences in maturity were detected among the cultivars in 2008, but maturity of Cheniere and XL723 were delayed compared with CL161 and Cocodrie in 2007. Maturity of Cheniere and XL723 was delayed in 2007 compared with 2008. Pooled over cultivar, maturity was similar for 2 and 4 WAF applications in 2007 but was delayed for 2 WAF treatments in 2008. Regardless of year, postflood quinclorac applications reduced rough rice yield of all cultivars except Bowman. Cheniere and XL723 had lower rough rice yields compared with other cultivars in 2007; however, in 2008, rough rice yields of Cheniere, CL161, Cocodrie, and XL723 were similar, but still lower, than that of Bowman. Pooled over cultivar, postflood quinclorac reduced rough rice yields more when applied 4 WAF than at 2 WAF during both years. Our results demonstrate that Cheniere and XL723 are less tolerant than Bowman is to postflood quinclorac applications and that all evaluated cultivars are more susceptible to quinclorac applied at later developmental stages. Consequently, if circumstances necessitate a postflood quinclorac application, the herbicide should be applied no later than panicle initiation and should not be applied to Cheniere or XL723.

El cultivar y/o la etapa de crecimiento en que se encuentra el arroz en el momento de la aplicación de quinclorac, puede afectar la tolerancia de este cultivo al mencionado herbicida. Se realizaron estudios de campo para comparar la respuesta de cinco cultivares de arroz (‘Bowman’, ‘Cheniere’, ‘CL161’, ‘Cocodrie’, y ‘XL723’) a las aplicaciones de quinclorac post-inundación. El quinclorac a 0.56 kg ia ha−1 fue aplicado a las 2 y 4 semanas después de la inundación (WAF). Promediado a través de los tiempos de aplicación de quinclorac, en 2008 en la etapa de madures no se detectaron diferencias entre cultivares, pero la maduración de Cheniere y XL723 se retrasó en comparación con CL161 y Cocodrie en 2007. La maduración de Cheniere y XL723 se retrasó en 2007 en comparación con 2008. Promediado entre cultivares, la maduración fue similar para las aplicaciones a 2 y 4 WAF en 2007, pero se atrasó en los tratamientos a las 2 WAF en 2008. Indistintamente del año, las aplicaciones de quinclorac post-inundación disminuyeron el rendimiento bruto del arroz en todos los cultivares con excepción de Bowman. Cheniere y XL723 tuvieron menores rendimientos brutos en comparación con otros cultivares en 2007; sin embargo, en 2008 los rendimientos brutos de Cheniere, CL161, Cocodrie, y XL723 fueron similares pero más bajos que Bowman. Promediado entre cultivares, el quinclorac post-inundación redujo los rendimientos brutos de arroz en mayor grado cuando se aplicó 4 WAF que cuando se aplicó 2 WAF, en ambos años. Nuestros resultados demuestran que Cheniere y XL723 son menos tolerantes que Bowman a las aplicaciones de quinclorac post-inundación y que todos los cultivares evaluados son más susceptibles al quinclorac aplicado en etapas más tardías de desarrollo. Consecuentemente, si las circunstancias requieren de una aplicación de quinclorac post-inundación, entonces el herbicida debe ser aplicado a más tardar a la iniciación de la panícula (PI) y no debe ser aplicado a Cheniere o XL723.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adair, C. R., Bollich, C. N., Bowman, D. H., Jodon, N. E., Johnston, T. H., Webb, B. D., and Atkins, J. G. 1972. Rice breeding and testing methods in the United States. Pages 2575 in Rice in the United States: Varieties and Production. Washington, DC U.S. Department of Agriculture–Agricultural Research Service Handbook 289.Google Scholar
Anonymous, . 2004. 2,4-D Amine 4 herbicide label. http://www.greenbook.net. Accessed: September 16, 2011.Google Scholar
Anonymous, . 2008. Grandstand R herbicide label. http://www.greenbook.net. Accessed: September 16, 2011.Google Scholar
Anonymous, . 2010. Facet herbicide label. http://www.greenbook.net. Accessed: September 14, 2011.Google Scholar
Anonymous, . 2011a. Interactive rice DD50 program. http://ext.msstate.edu/anr/drec/ricedd50.cgi. Accessed: September 19, 2011.Google Scholar
Anonymous, . 2011b. RiceTec hybrid rice management guidelines. http://www.ricetec.com/page.asp?id=179. Accessed: September 14, 2011.Google Scholar
Baltazar, A. M. and Smith, R. J. 1994. Propanil-resistant barnyardgrass (Echinochloa crus-galli) control in rice (Oryza sativa). Weed Technol. 8:576581.Google Scholar
Bond, J. A. and Walker, T. W. 2011. Differential tolerance of Clearfield cultivars to imazamox. Weed Technol. 25:192197.CrossRefGoogle Scholar
Bond, J. A., Walker, T. W., Webster, E. P., Buehring, N. W., and Harrell, D. L. 2007. Rice cultivar response to penoxsulam. Weed Technol. 21:361365.CrossRefGoogle Scholar
Buehring, N. W., ed. 2008. Mississippi Rice Grower's Guide. Starkville, MS Mississippi State University Extension Service. 80 p.Google Scholar
Byrd, J. D. Jr., ed. 2011. 2011 Weed Control Guidelines for Mississippi. Mississippi State, MS Mississippi State University Extension Service and Mississippi Agricultural and Forestry Experimental Station. Pp. 6777.Google Scholar
Chism, W. J., Bingham, S. W., and Shaver, R. L. 1991. Uptake, translocation, and metabolism of quinclorac in two grass species. Weed Technol. 5:771775.Google Scholar
Griffin, J. L. and Baker, J. B. 1990. Tolerance of rice (Oryza sativa) cultivars to fenoxaprop, sethoxydim, and haloxyfop. Weed Sci. 38:528531.Google Scholar
Grossmann, K. 1996. A role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms. Physiol. Plant. 97:772775.CrossRefGoogle Scholar
Grossmann, K. 1997. Highly selective, auxin herbicides of the quinolinecarboxylic acid type. The mode of action of the rice herbicide quinclorac (Facet). Pages 4553 in Pandalai, S. G., ed. Recent Research Developments in Plant Physiology 1. Trivandrum, India Research Signpost.Google Scholar
Grossmann, K. 1998. Quinclorac belongs to a new class of highly selective auxin herbicides. Weed Sci. 46:707716.CrossRefGoogle Scholar
Grossmann, K. and Kwiatkowski, J. 1993. Selective induction of ethylene and cyanide biosynthesis appears to be involved in the selectivity of the herbicide quinclorac between rice and barnyardgrass. J. Plant Physiol. 142:457466.Google Scholar
Grossmann, K., Scheltrup, F., Kwiatkowski, J., and Caspar, G. 1996. Induction of abscisic acid is a common effect of auxin herbicides in susceptible plants. J. Plant Physiol. 149:475478.Google Scholar
Holm, L. G., Pancho, J. V., Herberger, J. P., and Plucknett, D. L. 1977. The World's Worst Weeds. Honolulu University Press of Hawaii.Google Scholar
Holm, L. G., Pancho, J. V., Herberger, J. P., and Plucknett, D. L. 1979. A Geographical Atlas of World Weeds. New York Wiley.Google Scholar
Jones, D. B. and Snyder, G. H. 1987. Seeding rate and row spacing effects on yield and yield components of drill-seeded rice. Agron. J. 79:623626.Google Scholar
Lamoureux, G. L. and Rusness, D. G. 1995. Quinclorac absorption, translocation, metabolism, and toxicity in leafy spurge (Euphorbia esula). Pestic. Biochem. Physiol. 53:210226.Google Scholar
Pantone, D. J. and Baker, J. B. 1992. Varietal tolerance of rice (Oryza sativa) to bromoxynil and triclopyr at different growth stages. Weed Technol. 6:969974.CrossRefGoogle Scholar
Pritchard, M. K. and Warren, G. F. 1980. Effect of light on the response of tomato (Lycopersicon esculentum) and two weed species to metribuzin. Weed Sci. 28:186189.Google Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 12431246 in Proceedings of the 23rd SAS Users Group International. Cary, NC SAS Institute.Google Scholar
Slaton, N. A., Linscombe, S. D., Norman, R. J., and Gbur, E. E. Jr. 2003. Seeding date effect on rice grain yields in Arkansas and Louisiana. Agron. J. 95:218223.Google Scholar
Smith, R. J. Jr. 1968. Weed competition in rice. Weed Sci. 16:252254.CrossRefGoogle Scholar
Smith, R. J. Jr. 1974. Competition of barnyardgrass with rice cultivars. Weed Sci. 22:423426.Google Scholar
Smith, R. J. Jr. 1988. Weed thresholds in southern U.S. rice, Oryza sativa. Weed Technol. 2:232241.Google Scholar
Smith, R. J. Jr. and Hill, J. E. 1990. Weed control technology in U.S. rice. Pages 314327 in Grayson, B. T., Green, M. B. and Copping, L. D., eds. Pest Management in Rice. Oxford, UK Elsevier.Google Scholar
Snipes, C. E. and Street, J. E. 1987. Fenoxaprop for postemergence barnyardgrass (Echinochloa crus-galli) control in rice (Oryza sativa). Weed Sci. 35:224227.CrossRefGoogle Scholar
Street, J. E. and Mueller, T. C. 1993. Rice (Oryza sativa) weed control with soil application of quinclorac. Weed Technol. 7:600604.Google Scholar
Street, J. E., Teresiak, H., Boykin, D. L., and Allen, R. L. 1995. Interaction between timings and doses of quinclorac in rice. Weed Res. 35:7579.CrossRefGoogle Scholar
Talbert, R. E. and Burgos, N. R. 2007. History and management of herbicide-resistant barnyardgrass (Echinochloa crus-galli) in Arkansas rice. Weed Technol. 21:324331.Google Scholar
Webster, E. P., Baldwin, F. L., and Dillon, T. L. 1999. The potential for clomazone use in rice (Oryza sativa). Weed Technol. 13:390393.Google Scholar
Webster, T. M. 2008. Weed survey—grass crops subsection. Proc. South. Weed Sci. Soc. 61:224243.Google Scholar
Zhang, W. and Webster, E. P. 2002. Shoot and root growth of rice (Oryza sativa) in response to V-10029. Weed Technol. 16:768772.CrossRefGoogle Scholar
Zhang, W., Webster, E. P., Blouin, D. C., and Linscombe, S. D. 2004. Differential tolerance of rice (Oryza sativa) varieties to clomazone. Weed Technol. 18:7376.Google Scholar
Zhang, W., Webster, E. P., and Leon, C. T. 2005. Response of rice cultivars to V-10029. Weed Technol. 19:307311.Google Scholar