Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T22:33:24.253Z Has data issue: false hasContentIssue false

Effect of Nitrogen Addition and Weed Interference on Soil Nitrogen and Corn Nitrogen Nutrition

Published online by Cambridge University Press:  20 January 2017

John L. Lindquist*
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
Sean P. Evans
Affiliation:
Monsanto Company, Jerseyville, IL 62052
Charles A. Shapiro
Affiliation:
Haskell Agricultural Laboratory, University of Nebraska, Concord, NE 68728
Stevan Z. Knezevic
Affiliation:
Haskell Agricultural Laboratory, University of Nebraska, Concord, NE 68728
*
Corresponding author's E-mail: jlindquist1@unl.edu.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Weeds cause crop loss indirectly by reducing the quantity of resources available for growth. Quantifying the effects of weed interference on nitrogen (N) supply, crop growth, and N nutrition may assist in making both N and weed management decisions. Experiments were conducted to quantify the effect of N addition and weed interference on soil nitrate-N (NO3-N) over time and the dependence of corn growth on NO3-N availability, determine the corn N nutrition index (NNI) at anthesis, and evaluate if relative chlorophyll content can be utilized as a reliable predictor of NNI. Urea was applied at 0, 60, and 120 kg N/ha to establish N treatments. Season-long weedy, weed-free, and five weed interference treatments were established by delaying weed control from time of crop planting to the V3, V6, V9, V15, or R1 stages of corn development. Soil NO3-N ranged from 20 kg N/ha without N addition to 98 kg N/ha with 120 kg N/ha added early in the season, but crop and weed growth reduced soil NO3-N to 10 kg N/ha by corn anthesis. Weed presence reduced soil NO3-N by up to 50%. Average available NO3-N explained 29 to 40% of the variation in corn shoot mass at maturity. Weed interference reduced corn biomass and NNI by 24 to 69%. Lack of N also reduced corn NNI by 13 to 46%, but reduced corn biomass by only 11 to 23%. Nondestructive measures of relative chlorophyll content predicted corn NNI with 65 to 85% accuracy. Although weed competition for factors other than N may be the major contributor to corn biomass reduction, the chlorophyll meter was a useful diagnostic tool for assessing the overall negative effects of weeds on corn productivity. Further research could develop management practices to guide supplemental N applications in response to weed competition.

La maleza causa pérdida indirecta del cultivo porque reduce la cantidad de recursos disponibles para su crecimiento. La cuantificación de los efectos de la interferencia de la maleza en el suministro de nitrógeno (N), crecimiento de cultivo y en la nutrición, es importante para la toma de decisiones relativas a la administración del N y al manejo de la maleza. Se realizaron experimentos para cuantificar los efectos de la administración de nitrógeno e interferencia de la maleza en el nitrato-N del suelo (NO3-N) al paso del tiempo y la dependencia del crecimiento de maíz con disponibilidad de NO3-N, para determinar el índice de nutrición del maíz (NN1) al espigamiento, y para evaluar si el contenido de clorofila relativa puede ser utilizada como un estimador confiable de (NN1). Urea fue aplicada a 0, 60 y 120 kg N/ha para establecer tratamientos de N. Se establecieron siete tratamientos: el primero, con largos períodos de abundante maleza, otro libre de maleza y cinco tratamientos con diferentes interferencias de maleza, a través de retrasar el control de la misma, cuando el maíz alcanzó las etapas V3, V6, V9, V15 y R1. El nitrato en el suelo se encontró en cantidades de 20 kg/ha sin adición de N. Cuando se aplicó 120 kg de N/ha, se registró una cantidad de 98 kg/ha de nitratos, al principio de la estación. Sin embargo, el crecimiento de la maleza y del cultivo redujeron el nitrato del suelo a 10 kg/ha hasta la antesis. La presencia de maleza, disminuyó el nitrato del suelo hasta un 50%. El promedio de NO3-N disponible explicó del 29 al 40% de la variación del crecimiento de los brotes del maíz, en la etapa de maduración. La interferencia de la maleza redujo la biomasa del maíz y del NN1 entre 24 y 69%. La falta de N redujo el NN1 del maíz de un 13 a un 46%, pero disminuyó la biomasa del maíz solamente del 11 al 23%. Las medidas no destructivas del contenido relativo de clorofila, estimaron el NN1 de maíz con un 65 a 80% de certeza. Mientras que la competencia de maleza para factores diferentes al N puede ser el factor más importante en la reducción de la biomasa del maíz; el medidor de clorofila fue una herramienta útil de diagnóstico para evaluar sobretodo los efectos negativos de la maleza en el rendimiento. Futuras investigaciones deben de desarrollar guías prácticas de manejo en aplicaciones suplementarias de N, en respuesta a la competencia de la maleza.

Type
Weed Biology and Competition
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits noncommercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited.
Copyright
Copyright © Weed Science Society of America

References

Literature Cited

Below, F. E., Christensen, L. E., Reed, A. J., and Hageman, R. H. 1981. Availability of reduced N and carbohydrates for ear development of maize. Plant Physiol 68:11861190.Google Scholar
Bray, R. H. and Kurtz, L. T. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Sci 59:3945.Google Scholar
Brown, J. R. and Warncke, D. D. 1988. Recommended cation tests and measures of cation exchange capacity. Pages 1516. In Dahnke, W. C. Recommended Chemical Soil Test Procedures for the North Central Region. NCR Publ. No. 221 (Revised). Columbia, MO: Missouri Agricultural Experiment Station.Google Scholar
Davis, A. S. and Liebman, M. 2001. Nitrogen source influences wild mustard growth and competitive effect on sweet corn. Weed Sci 49:558–556.Google Scholar
Debaeke, P., Rouet, P., and Justes, E. 2006. Relationship between the normalized SPAD index and the nitrogen nutrition index: application to durum wheat. J. Plant Nutr 29:7592.Google Scholar
Devienne-Barret, F., Justes, E., Machet, J. M., and Mary, B. 2000. Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions. Ann. Bot 86:9951005.Google Scholar
Evans, S. P., Knezevic, S. Z., Shapiro, C., and Lindquist, J. L. 2003a. Nitrogen application influences the critical period for weed control in corn. Weed Sci 51:408417.Google Scholar
Evans, S. P., Knezevic, S. Z., Shapiro, C., and Lindquist, J. L. 2003b. Influence of nitrogen and duration of weed interference on corn growth and development. Weed Sci 51:546556.Google Scholar
Gastal, F. and Lemaire, G. 2002. N uptake and distribution in crops: an agronomical and ecophysiological perspective. J. Exp. Bot 53:789799.Google Scholar
Gelderman, R. H. and Beegle, D. 1998. Nitrate-nitrogen. Pages 1720. in Brown, J. R., ed. Recommended chemical soil test procedures for the North Central Region. North Central Regional Research Publication No. 221 (Revised). Columbia: Missouri Agricultural Experiment Station.Google Scholar
Gilmore, E. C. and Rogers, R. S. 1958. Heat units as a method of measuring maturity in corn. Agron. J. 50:611615.Google Scholar
Goldberg, D. E. 1990. Components of resource competition in plant communities. Pages 2749. In Grace, J. B. and Tilman, D. Perspectives on Plant Competition. San Diego, CA: Academic Press.Google Scholar
Greenwood, E. A. N. 1976. Nitrogen stress in plants. Adv. Agron 28:135.Google Scholar
Hanway, J. J. 1962. Corn growth and composition in relation to soil fertility: I. Growth of different plant parts and relation between leaf weight and grain yield. Agron. J. 53:145148.Google Scholar
Hergert, G. W., Ferguson, R. B., and Shapiro, C. A. 1995. Fertilizer suggestions for corn. Publication No. G74-174-A. Lincoln, NE: University of Nebraska Cooperative Extension. 6 p.Google Scholar
Lemaire, G. 1997. Diagnosis of the Nitrogen Status in Crops. Berlin: Springer-Verlag. 239 p.Google Scholar
Lemaire, G., Jeuffroy, M. H., and Gastal, F. 2008. Diagnosis tool for plant and crop N status in vegetative stage: theory and practices for crop N management. Eur. J. Agron 28:614624.Google Scholar
Lengnick, L. L. and Fox, R. H. 1994. Simulation by NCSWAP of seasonal nitrogen dynamics in corn: I. Soil nitrate. Agron. J. 86:167175.Google Scholar
Lindquist, J. L. 2001. Mechanisms of crop loss due to weed competition. Pages 233253. In Peterson, R. K. D. and Higley, L. G. Biotic Stress and Yield Loss. Boca Raton, FL: CRC Press.Google Scholar
Lindquist, J. L., Barker, D. C., Knezevic, S. Z., Martin, A. R., and Walters, D. T. 2007. Comparative nitrogen uptake and distribution in corn and velvetleaf (Abutilon theophrasti). Weed Sci 55:102110.Google Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. 1996. SAS® System for Mixed Models. Cary, NC: SAS Institute, Inc., 1996. 633 p.Google Scholar
Plenet, D. and Lemaire, G. 2000. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil 216:6582.Google Scholar
Ritchie, S. W., Hanway, J. J., and Benson, G. O. 1997. How a corn plant develops. Special Report No. 48. (Revised). Ames, IA: Iowa State University of Sciences and Technology, Cooperative Extension Service. 21 p.Google Scholar
Shainsky, L. J. and Radosevich, S. R. 1992. Mechanisms of competition between douglas-fir and red alder seedlings. Ecology 73:3045.Google Scholar
Sinclair, T. R. and De Wit, C. T. 1975. Photosynthate and nitrogen requirements for seed production by various crops. Science 189:565567.Google Scholar
Sinclair, T. R. and Horie, T. 1989. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci 29:9098.Google Scholar
Sinclair, T. R. and Muchow, R. C. 1995. Effect of nitrogen supply on maize yield: I. Modeling physiological responses. Agron. J. 87:632641.Google Scholar
Smeal, D. and Zhang, H. 1994. Chlorophyll meter evaluation for nitrogen management in corn. Commun. Soil Sci. Plant Anal 25:14951503.Google Scholar
Tilman, D. 1990. Mechanisms of plant competition for nutrients: The elements of a predictive theory of competition. Pages 117141. In Grace, J. B. and Tilman, D. Perspectives on Plant Competition. San Diego, CA: Academic Press.Google Scholar
Ziadi, N., Brassard, M., Belanger, G., Cambouris, A. N., Tremblay, N., Nolin, M. C., Claessens, A., and Parent, L. E. 2008a. Critical nitrogen curve and nitrogen nutrition index for corn in eastern Canada. Agron. J. 100:271276.Google Scholar
Ziadi, N., Brassard, M., Belanger, G., Claessens, A., Tremblay, N., Cambouris, A. N., Nolin, M. C., and Parent, L. E. 2008b. Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agron. J. 100:12641273.Google Scholar