Published online by Cambridge University Press: 20 January 2017
Field and greenhouse studies examined glyphosate and several ACCase-inhibitor herbicides for control of wirestem muhly. A field study evaluated application rate and timing for control in glyphosate-resistant soybean. Herbicides were applied at two rates, 4 and 6 wk after planting (WAP) of soybean when wirestem muhly was about 30 and 50 cm tall, respectively. A complimentary greenhouse experiment with the same herbicides examined wirestem muhly rhizome viability 30 days after herbicide application. A second field study examined optimum glyphosate application timing for control of wirestem muhly during a fallow rotation period. Glyphosate was applied at 14-day intervals from mid-May through early October. In the first field study, glyphosate, fluazifop, and clethodim provided better control of wirestem muhly than sethoxydim and quizalofop. Clethodim, fluazifop, and glyphosate provided 74 to 92% control over both rates and application timings, whereas quizalofop and sethoxydim were the least effective, providing only 52 to 64% control regardless of rate or timing. In the greenhouse, glyphosate was the most effective herbicide, providing at least 97% control and an 87% reduction in shoot biomass; sethoxydim and fluazifop were the least effective herbicides. All of the herbicides reduced rhizome viability compared to nontreated plants up to 71%, but no difference between herbicides was observed. In the second field study, end-of-season ratings revealed that glyphosate provided 95 to 100% control of wirestem muhly from applications made between late June and early September. The year following application, glyphosate provided 91 to 99% control of wirestem muhly from applications made between mid-June and early September. Applications earlier than mid-June or after early September resulted in less than 90% control. Overall, results show that (1) glyphosate was the most effective herbicide; (2) the ACCase-inhibitor herbicides differ in their effectiveness; and (3) rate and application timing can impact control.