Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T00:54:24.788Z Has data issue: false hasContentIssue false

Effect of Ambient Moisture on Aminocyclopyrachlor Efficacy

Published online by Cambridge University Press:  20 January 2017

Dustin F. Lewis*
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
Matthew D. Jeffries
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
Harry J. Strek
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
Robert J. Richardson
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
Fred H. Yelverton
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: dustin.f.lewis@basf.com

Abstract

Aminocyclopyrachlor (AMCP) is a newly developed synthetic auxin herbicide for broadleaf weed control in turfgrass systems. AMCP has been observed to undergo rapid photodecomposition in shallow water when exposed to sunlight. Most herbicide applications on golf courses occur during the morning when dew is still present on the turfgrass canopy. These conditions could result in efficacy loss if photolysis occurred while AMCP is suspended in dew droplets. Research was conducted to determine the effect of ambient moisture on AMCP efficacy. AMCP (79 and 105 g ae ha−1), aminopyralid (280 g ae ha −1), and two AMCP granular formulations (84 g ha−1) were applied to dew-covered (WET) and dew-excluded (DRY) ‘Tifway' bermudagrass plots. Herbicide treatments applied to WET plots had greater visually rated bermudagrass injury than respective treatments applied to DRY plots at 7 and 21 d after treatment (DAT), with the exception of aminopyralid at 21 DAT. Normalized difference vegetative index on turfgrass quality complemented visual ratings, indicating greater turfgrass quality reductions when applied to WET vs. DRY plots. These results indicate that AMCP applications made to dew-covered turfgrass can increase herbicidal efficacy, and no significant losses due to photodegradation were observed.

Aminocyclopyrachlor (AMCP) es un herbicida del grupo de las auxinas sintéticas recientemente desarrollado para el control de malezas de hoja ancha en sistemas de céspedes. Se ha visto que AMCP sufre una rápida fotodescomposición en aguas superficiales cuando se expone a la luz solar. La mayoría de las aplicaciones de herbicidas en campos de golf se dan durante las mañanas cuando el rocío está todavía presente sobre el dosel del césped. Estas condiciones podrían resultar en una pérdida de eficacia si ocurre fotólisis mientras AMCP se encuentra suspendido en las gotas de rocío. Se realizó una investigación para determinar el efecto de la humedad ambiental sobre la eficacia de AMCP. Se aplicó AMCP (79 y 105 g ae ha−1), aminopyralid (280 g ae ha−1), y dos formulaciones granulares de AMCP (84 g ha−1) a parcelas del césped Cynodon dactylon 'Tifway' cubiertas con rocío (WET) y sin rocío (DRY). Los herbicidas aplicados a parcelas WET tuvieron un mayor daño evaluado visualmente que los tratamientos respectivos aplicados a parcelas DRY a 7 y 21 días después del tratamiento (DAT), con la excepción de aminopyralid a 21 DAT. El índice de diferencia vegetativa normalizada de la calidad del césped complementó las evaluaciones visuales, indicando mayores reducciones en la calidad del césped cuando se aplicaron parcelas en WET vs. DRY. Estos resultados indican que las aplicaciones AMCP hechas en césped cubierto con rocío pueden incrementar la eficacia del herbicida y no se observaron pérdidas significativas debido a fotodegradación.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2010. Imprelis® herbicide product label. E.I du Pont de Nemours and Company Publication No. H-65717. Wilmington, DE Du Pont. 9 p.Google Scholar
Anonymous. 2008. Milestone® herbicide label. Dow AgroSciences. http://www.cdms.net/LDat/ld77N009.pdf. Accessed: June 7, 2011.Google Scholar
Bell, G. E., Martin, D. L., Wiese, S. G., Dobson, D. D., Smith, M. W., Stone, M. L., and Solie, J. B. 2002. Vehicle-mounted optical sensing: an objective means for evaluating turf quality. Crop Sci. 42:197201.Google ScholarPubMed
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences for combined analysis of experiments with two or three factor treatment designs. Agron. J. 81:665672.Google Scholar
Caseley, J. C. 1989. Variation in foliar pesticide performance attributable to humidity, dew and rain effects. Aspects Appl. Biol. (CAB Abstr.) 21:215225.Google Scholar
Claus, J., Turner, R., Armel, G., and Holliday, M. 2008. DuPont aminocyclopyrachlor (proposed common name) (DPX-MAT28/KJM44) herbicide for use in turf, IWC, bare-ground, and brush markets. Page 654 in Proceedings of the 5th International Weed Science Congress, Volume 1. Fayetteville, AR International Weed Science Society.Google Scholar
Cobb, A. H. and Reade, J. P. H. 2010. Herbicides and Plant Physiology. 2nd ed. West Sussex, UK John Wiley. Pp. 133155.Google Scholar
Currier, H. B. and Dybing, C. D. 1959. Foliar penetration of herbicides: Review and present status. Weeds. 7:195213.CrossRefGoogle Scholar
Curtis, D. W., Kinds-Cook, B. J., Brewster, B. D., Hulting, A. G., and Mallory-Smith, C. A. 2009. Tolerance of perennial ryegrass and tall fescue grown for seed to aminocyclopyrachlor (DPX KJM-44). Proc. West. Soc. Weed Sci. 62:7071.Google Scholar
Finkelstein, B. L., Armel, G. R., Bolgunas, S. A., Clark, D. A., Claus, J. S., Crosswicks, R. J., Hirata, C. M., Hollingshaus, G. J., Koeppe, M. K., Rardon, P. L., Wittenbach, V. A., and Woodward, M. D. 2008. Discovery of aminocyclopyrachlor (proposed common name) (DPX-MAT28): A new broad-spectrum auxinic herbicide. Page 19 in Proceedings of the 236th American Chemical Society National Meeting (Philadelphia, PA).Google Scholar
Flessner, M. L., Dute, R. R., and McElroy, J. S. 2011a. Anatomical response of St. Augustinegrass to aminocyclopyrachlor treatment. Weed Sci. 59:263269.Google Scholar
Flessner, M. L., McCurdy, J. D., and McElroy, J. S. 2011b. Tolerance of six zoysiagrass cultivars to aminocyclopyrachlor. Weed Technol. 25:574579.Google Scholar
Flessner, M. L., McElroy, J. S., and Wehtje, G. R. 2011c. Quantification of warm-season turfgrass injury from triclopyr and aminocyclopyrachlor. Weed Technol. 25:367373.Google Scholar
Gannon, T. W., Yelverton, F. H., Warren, L. S., and Silcox, C. A. 2009. Broadleaf weed control with aminocyclopyrachlor (DPX-KJM44) in fine turf. Proc. South. Weed Sci. Soc. 62:394.Google Scholar
Grossmann, K. 2009. Auxin herbicides: current status of mechanism and mode of action. Pest Manag. Sci. 66:113120.Google Scholar
Hess, F. D. and Falk, R. H. 1990. Herbicide deposition on leaf surfaces. Weed Sci. 38:280288.Google Scholar
Johnstone, D. 1973. Spreading and retention of pesticide sprays. Pages 343386 in van Valkenburg, W., ed. Pesticide Formulations. New York Marcel Dekker.Google Scholar
Kieffer, D. L. 2009. Field Scout TCM 500 NDVI Turf color meter produce manual. Plainfield, IL Spectrum Technologies. 28 p.Google Scholar
Kogan, M. and Zu'ñiga, M. 2001. Dew and spray volume effect on glyphosate efficacy. Weed Technol. 15:590593.Google Scholar
Lewis, D. F., McElroy, J. S., Sorochan, J. C., Mueller, T. C., Samples, T. J., and Breeden, G. K. 2010. Efficacy and safening of aryloxyphenoxypropionate herbicides when tank-mixed with triclopyr for bermudagrass control in zoysiagrass turf. Weed Technol. 24:489494.Google Scholar
Monaco, T. J., Weller, S. C., and Ashton, F. M. 2002. Weed Science: Principles and Practices. 4th ed. New York J. Wiley. 671 p.Google Scholar
Pallas, J. E. 1960. Effects of temperature and humidity on foliar absorption and translocation of 2,4- dichlorophenoxy-acetic acid and benzoic acid. Plant Physiol. 35:575580.Google Scholar
Richardson, R. G. 1977. A review of foliar absorption and trans-location of 2,4-D and 2,4,5-T. Weed Res. 17:259272.Google Scholar
Ross, M. A. and Lembi, C. A. 1999. Applied Weed Science. 2nd ed. Upper Saddle River, NJ Prentice-Hall. Pp. 97106.Google Scholar
SAS Institute. 2004. SAS/STAT User's Guide Release 9.0. Cary, NC SAS Institute. Pp. 26612844.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. Pp. 323361.Google Scholar
Taiz, L. and Zeiger, E. 2006. Plant Physiology. 4th ed. Sunderland, MA Sinauer. Pp. 315317.Google Scholar
[USEPA] U.S. Environmental Protection Agency. 2011. Stop sale, use, or removal order. Docket No: FIFRA-03-2011-0277SS. Philadelphia, PA. Pp. 19.Google Scholar
Yelverton, F. H., Hoyle, J. A., Gannon, T. W., and Warren, L. S. 2009. Plant counts, digital image analysis, and visual ratings for estimating weed control in turf: are they correlated? Proc. Southern Weed Sci. Soc. 62:399.Google Scholar